Éxitos, anomalías y retos del EW-SM a sus 50 años

Gabriel López Castro, ICN-UNAM, 06/12/24

Éxitos, anomalías y retos del EW-SM a sus 50 años

Gabriel López Castro, ICN-UNAM, 06/12/24

"Never underestimate the joy people derive from hearing something they already know"

Case Western Reserve University June 1-4, 2018

Volume 19, Number 21

PHYSICAL REVIEW LETTERS

20 November 1967

A MODEL OF LEPTONS*

Steven Weinberg[†] Laboratory for Nuclear Science and Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received 17 October 1967)

Case Western Reserve University June 1-4, 2018

VOLUME 19, NUMBER 21

PHYSICAL REVIEW LETTERS

20 November 1967

A MODEL OF LEPTONS*

Steven Weinberg[†] Laboratory for Nuclear Science and Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received 17 October 1967)

Progress of Theoretical Physics, Vol. 49, No. 2, February 1973

CP-Violation in the Renormalizable Theory of Weak Interaction

Makoto KOBAYASHI and Toshihide MASKAWA

Department of Physics, Kyoto University, Kyoto

(Received September 1, 1972)

In a framework of the renormalizable theory of weak interaction, problems of *CP*-violation are studied. It is concluded that no realistic models of *CP*-violation exist in the quartet scheme without introducing any other new fields. Some possible models of *CP*-violation are also discussed.

Violación de CP en el SM ⇒ ∃ 3 family of quarks + QCD (Fritzsch, Gell-Mann,

Leutwyler)

🔆 📩 🔆 📩 🔆 📩 📩 📩 📩 📩 📩 📩 📩 📩 📩

La teoría y los experimentos más precisos en física

🔆 Interacción de teoría y experimento

🔆 No hay algo en la tierra que lo ponga en duda (seriamente)

💢 🗄 anomalías que deben confirmarse o refutarse

🔆 Enigmas sin resolver (origen del sabor, 3 generaciones, ...)

🞾 Nadie duda que el SM debe extenderse (u's, DM)

🗙 Nuevas preguntas y nuevos experimentos

$\hbar = c = 1$ [masa]=[energía]=[distancia]⁻¹=[tiempo]⁻¹= eV

Interacciones fundamentales y componentes

Una vez descubierto el protón en 1919.... 1er modelo de interacciones fuertes: estabilidad núcleos

1932: Chadwick descubre el neutrón (q=0)

1932: Heisenberg, (n, p) isodoblete

1935: Yukawa propone teoría $\mathscr{L}_{Y} = -g\overline{N}N\phi$

Una vez descubierto el protón en 1919.... 1er modelo de interacciones fuertes: estabilidad núcleos

...Interacciones fundamentales y componentes

Courtesy of Thomas Jefferson National Accelerator Facility - Office of Science Education. Used with permission.

...Interacciones fundamentales y componentes

Courtesy of Thomas Jefferson National Accelerator Facility - Office of Science Education. Used with permission.

Teoría de Fermi 1934

$$\mathscr{L}_F = -G(\overline{\psi_p}\gamma_\mu\psi_n) \times (\overline{\psi_e}\gamma^\mu\psi_\nu)$$

El Modelo Estándar de Interacciones fundamentales

*

El Modelo estándar: TCC+ $SU(3)_C \times SU(2)_L \times U(1)_Y$ +RES

$$\mathscr{L}_{SM} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i\overline{\psi}\overline{\psi}\psi + \text{h.c.}$$
$$+ y_{ij}\overline{\psi}_{i}\psi_{j}\phi + \text{h.c.}$$

1961 Glashow, leptones y bosones sin masa, autointeracciones W^{\pm}, Z

+
$$y_{ij}\overline{\psi}_{i}\psi_{j}\phi$$
 + h.c.
+ $\left|D_{\mu}\phi\right|^{2} - V(\phi)$

1967 Weinberg, masa leptones , $Hf\bar{f}$

1964 Brout, Englert, Higgs... Masas $W^{\pm}, Z, m_{H}, \cdots$

Image: Second Structure

Campos: objetos fundamentales que crean y destruyen partículas y antipartículas (excitaciones)

Fortaleza de una teoría científica:

- 1) variedad de fenómenos que explica,
- 2) capacidad de hacer predicciones "falsables" (capacidad de someter a prueba)

Simetrías y consecuencias de TCC

- Homegeneidad del espacio-tiempo
- Isotropía del espacio-tiempo
- Invariancia Grupo de Lorentz
- + hermiticidad
- Invariancia U(1) electromagnética
- Simetrías accidentales U(1)

- conservación (E, \vec{p})
- \exists y conservación J = L + S
- \exists antipartículas (e^+, e^-, \dots)
- \Rightarrow Conservación CPT
- \implies Conservación Q
- \rightarrow Conservación de L y B

Simetrías y consecuencias de TCC

- Homegeneidad del espacio-tiempo
- Isotropía del espacio-tiempo
- Invariancia Grupo de Lorentz
- + hermiticidad
- Invariancia U(1) electromagnética
- Simetrías accidentales U(1) \implies Concorrección do I

El sabor no se conserva en las interacciones débiles cargadas
C, P, T y CP no son simetrías de las interacciones débiles
Las interacciones débiles son universales entre generaciones

 \exists y conservación J = L + S

conservación (E, \vec{p})

 \exists antipartículas (e^+, e^-, \dots)

- \Rightarrow Conservación CPT
- \implies Conservación Q
 - \Rightarrow Conservación de L y B

<u>Amplitud de probabilidad</u> $\mathcal{M} = \mathcal{M}_0 + \mathcal{M}_1 + \mathcal{M}_2 + \cdots$

• Perturbativo si $g^2/(4\pi) \ll 1$.

✦ Calcular con precision requerida por experimento

+ Finita a cada orden redefiniendo parámetros del SM

+ Renormalizabilidad: predictivo en términos de parámetros del MS

Renormalizabilidad, perturbatividad, predictibilidad

• Perturbativo si $g^2/(4\pi) \ll 1$.

Calcular con precision requerida por experimento

Finita a cada orden redefiniendo parámetros del SM

Renormalizabilidad: predictivo en términos de parámetros del MS

Renormalizabilidad, perturbatividad, predictibilidad

• Perturbativo si $g^2/(4\pi) \ll 1$.

Calcular con precision requerida por experimento

Finita a cada orden redefiniendo parámetros del SM

Renormalizabilidad: predictivo en términos de parámetros del MS

	Orden 0	O(1)	O(2)	O(3)	O(4)	O(5)
Vida muón						
a_e	X					\checkmark
a_mu	X				\checkmark	
d_n	X	X	×			
Mezcla $K^0 - K^0$	X	X		\checkmark		
$b \to s\ell^+\ell^-, \nu\bar{\nu}$	X		\checkmark			
$\mu \to e\gamma$	×	×	×	×	×	×

En teoría cuántica de campos, lo probable es posible

En teoría cuántica de campos, lo probable es posible

14

Éxitos del modelo

Miles de datos (Particle Data Book) pueden ser explicados por el modelo con sus 18 parámetros libres.

Predicción" de la masa del quark top y del boson de Higgs

Predicción de existencia de corrientes neutras (Weinberg 1967).

Particle Data Book

"Predicción" de la masa del Higgs

$$\frac{G_F}{\sqrt{2}} = \frac{\pi\alpha}{m_W^2 (1 - m_W^2 / m_Z^2)} (1 + \Delta r)$$

 $\Delta r = \Delta r(m_t, m_H, m_W...)$ Logarítmico en m_H, cuadrático en m_t.

"Predicción" de la masa del Higgs

 $\Delta r = \Delta r(m_t, m_H, m_W...)$ Logarítmico en m_H, cuadrático en m_t.

"Predicción" de la masa del Higgs

 $\frac{G_F}{\sqrt{2}} = \frac{\pi \alpha}{m_W^2 (1 - m_W^2 / m_Z^2)} (1 + \Delta r)$

 $\Delta r = \Delta r(m_t, m_H, m_W...)$ Logarítmico en m_H, cuadrático en m_t.

Mejor ajuste ICHEP 2008, $m_H = 116.4^{+18.3}_{-1.3} \text{ GeV}$ 17

PDG 2023 $m_H = 125.25 \pm 0.17$

¿La interacción del Higgs genera las masas?

C. Anastasiou, CTEQ-MCnet summer school 2008

Otras razones para preferir un solo doblete de Higgs, **"Reflections on the Higgs system"**, M. Veltman 1997

Ajuste electrodébil a datos de precisión. **Consistencia del ME**

Input

 $m_W = 80.369(16) \text{ GeV}$ $m_t = 172.47(46) \text{ GeV}$ $\sin^2 \theta_{\rm eff}^{\ell} = 0.23141(26)$ m_c, m_b, m_H $\Delta \alpha^{\rm had}(m_Z)$ H.O.O.

"Predicciones" del Ajuste electrodébil

*

$$m_W = 80.354 \pm 0.007 \text{ GeV}$$

$$m_t = 175.15 \pm 2.39 \text{ GeV}$$

Standard Model Production Cross Section Measurements

Status: May 2017

Límites de trivialidad y estabilidad

Hinne colf counting is coald domandant $\lambda(O)$

st

Anomalías

Todo cuadra muy bien....excepto algunas anomalías

Anomalía: resultado que no coincide con lo esperado en la Teoría

T. S. Kuhn (1962), "Estructura de las revoluciones científicas", Cap 7: Anomalías y el surgimiento de los descubrimientos científicos

Muchas anomalías recientes que causan un gran entusiasmo:

g - 2 del muon,anomalía de Cabibbo, $R(D), R(D^*),$ $b \to s\ell^+\ell^-,$ $K^+ \to \pi^+\nu\bar{\nu}, B \to K\nu\bar{\nu}$ $H \to Z\gamma$:

Todo cuadra muy bien....excepto algunas anomalías

Anomalía: resultado que no coincide con lo esperado en la Teoría

T. S. Kuhn (1962), "Estructura de las revoluciones científicas", Cap 7: Anomalías y el surgimiento de los descubrimientos científicos

Muchas anomalías recientes que causan un gran entusiasmo:

g - 2 del muon,anomalía de Cabibbo, $R(D), R(D^*),$ $b \to s\ell^+\ell^-,$ $K^+ \to \pi^+\nu\bar{\nu}, B \to K\nu\bar{\nu}$ $H \to Z\gamma$:

Criterio p/descubrimiento: anomalía > 5σ (p=0.00003 %)

Todo cuadra muy bien....excepto algunas anomalías

Anomalía: resultado que no coincide con lo esperado en la Teoría

T. S. Kuhn (1962), "Estructura de las revoluciones científicas", Cap 7: Anomalías y el surgimiento de los descubrimientos científicos

Muchas anomalías recientes que causan un gran entusiasmo:

g - 2 del muon,anomalía de Cabibbo, $R(D), R(D^*),$ $b \to s \ell^+ \ell^-,$ $K^+ \to \pi^+ \nu \bar{\nu}, B \to K \nu \bar{\nu}$ $H \to Z \gamma$:

Criterio p/descubrimiento: anomalía > 5σ (p=0.00003 %)

"A result that has a statistical significance of five sigma means the almost certain likelihood that a bump in the data is caused by a new phenomenon, rather than a statistical fluctuation."
L. Lyons, "Discovering the significance of 5σ ", arXiv: 1310.1284

Search	Degree of	Impact	LEE	Systematics	Number
	surprise				of σ
Higgs search	Medium	Very high	Mass	Medium	5
Single top	No	Low	No	No	3
SUSY	Yes	Very high	Very large	Yes	7
B_s oscillations	Medium/low	Medium	Δm	No	4
Neutrino oscillations	Medium	High	$sin^2(2 heta),\Delta m^2$	No	4
$B_s \to \mu\mu$	No	Low/Medium	No	Medium	3
Pentaquark	Yes	High/very high	M, decay mode	Medium	7
$(g-2)_{\mu}$ anomaly	Yes	High	No	Yes	4
H spin $\neq 0$	Yes	High	No	Medium	5
4^{th} generation q, l, ν	Yes	High	M, mode	No	6
$v_{ u} > c$	Enormous	Enormous	No	Yes	>8
Dark matter (direct)	Medium	High	Medium	Yes	5
Dark energy	Yes	Very high	Strength	Yes	5
Grav waves	No	High	Enormous	Yes	7

Requerido para proclamar descubrimiento de algo nuevo ----

¿Anomalía en la universalidad leptónica?

SM: las interacciones de gauge no distinguen generaciones de leptones (y quarks!)

¿Anomalía en la universalidad leptónica?

SM: las interacciones de gauge no distinguen generaciones de leptones (y quarks!)

¿Anomalía en la universalidad leptónica?

SM: las interacciones de gauge no distinguen generaciones de leptones (y quarks!)

Pich 2020

$ g_{\mu}/g_{e} $	$\frac{\Gamma_{\tau \to \mu}}{\Gamma_{\tau \to e}}$ 1.0018 (16)	$\frac{\Gamma_{\pi \to \mu} / \Gamma_{\pi \to e}}{1.0021 (16)}$	$\frac{\Gamma_{K \to \mu} / \Gamma_{K \to e}}{0.9978} (20)$	$\frac{\Gamma_{K \to \pi \mu} / \Gamma_{K \to \pi e}}{1.0010} $ (25)	$\frac{\Gamma_{W \to \mu} / \Gamma_{W \to e}}{0.996 (10)}$
$ g_{\tau}/g_{\mu} $	$ \Gamma_{\tau \to e} / \Gamma_{\mu \to e} $ 1.0011 (15)	$\frac{\Gamma_{\tau \to \pi}}{\Gamma_{\pi \to \mu}}$ 0.9962 (27)	$\begin{array}{l} \Gamma_{\tau \to K} / \Gamma_{K \to \mu} \\ 0.9858 \ (70) \end{array}$	$ \Gamma_{W \to \tau} / \Gamma_{W \to \mu} $ 1.034 (13)	
$ g_{\tau}/g_{e} $	$\frac{\Gamma_{\tau \to \mu}}{\Gamma_{\mu \to e}}$ 1.0030 (15)	$ \begin{array}{c} \Gamma_{W \rightarrow \tau} / \Gamma_{W \rightarrow e} \\ 1.031 \ (13) \end{array} \end{array} $			

Compatibles con 1, desviaciones del valor central <1.5%!

$$\frac{R(D^{(*)})}{B \to D^{(*)}\ell\nu_{\ell}} = \frac{B \to D^{(*)}\mu^{+}\mu^{-}}{B \to K^{(*)}\ell\nu_{\ell}}$$

$$R(K^{(*)}) = \frac{B \to K^{(*)}\mu^{+}\mu^{-}}{B \to K^{(*)}e^{+}e^{-}}$$

 $g_{\tau}/g_{e,\mu} = 1.06 \ (1.09) \ o$ nuevas interacciones?

Tendencia resultados recientes a disolver la anomalía

COMPLETEZ DE LA TEORÍA

- -

COMPLETEZ DE LA TEORÍA

$$i\overline{\psi} \ \mathcal{D}\psi \rightarrow \frac{ig}{\sqrt{2}} (\overline{u}, \overline{c}, \overline{t})_{L} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \gamma^{\mu} \begin{pmatrix} d' \\ s' \\ b' \end{pmatrix}_{L} W_{\mu} + \text{h.c.}$$

$$Matriz \text{ unitaria } VV^{\dagger} = 1 : 3 \text{ ángulos, 1 fase (CP)}$$

$$- \text{ Bajo CP } V \rightarrow V^{*}$$

$$-\text{Unitaridad/completez: } \Delta_{U} \equiv |V_{Ud}|^{2} + |V_{Us}|^{2} + |V_{Ub}|^{2} = 1$$

$$\Delta_{u} = 0.9985 \pm 0.0005$$

$$\Delta_{c} = 1.025 \pm 0.022$$

$$\Delta_{t} = 1.028 \pm 0.061$$

$$C = 0.022 \pm 0.022$$

$$\Delta_{t} = 1.028 \pm 0.061$$

observed *t' b u c t t' w* this *w* analysis - Ortogonalidad: $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

$$(|V_{ud}|^2) + |V_{us}|^2 + |V_{ub}|^2 = 0.9985 \pm 0.0007$$

$$(|V_{ud}|^2) + |V_{us}|^2 + |V_{ub}|^2 = 0.9985 \pm 0.0007$$

$$(|V_{ud}|^2) + |V_{us}|^2 + |V_{ub}|^2 = 0.9985 \pm 0.0007$$

$$(|V_{ud}|^2) + |V_{us}|^2 + |V_{ub}|^2 = 0.9985 \pm 0.0007$$

$$(|V_{ud}|^2) + |V_{us}|^2 + |V_{ub}|^2 = 0.9985 \pm 0.0007$$

$$(|V_{ud}|^2) + |V_{us}|^2 + |V_{ub}|^2 = 0.9985 \pm 0.0007$$

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9985 \pm 0.0007$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 0.9985 \pm 0.0007$$

$$(A,Z)^{P} + |V_{ud}|^{2} = \frac{2912.95(54) \sec}{V_{ud}}$$

$$|V_{ud}|^{2} = \frac{2912.95(54) \sec}{ft(1 + \operatorname{corr})}$$

$$\ll \operatorname{Corr. radiativas: } \alpha^{3}$$

$$\ll \operatorname{Estructura nuclear}$$

$$|V_{ud}| = 0.97373 \pm 0.00031$$

 $|V_{ud}| = 0.97373 \pm 0.00031$

 $|V_{ud}| = 0.97373 \pm 0.00031$

Unitaridad matriz CKM $\downarrow \downarrow$ $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

 $(A, \lambda, \overline{\rho}, \overline{\eta})$

Asimetría Bariónica del Universo (BAU)

$$\eta = \frac{n(B) - n(\bar{B})}{n(\gamma)}$$

Observado nucleosíntesis+CMB:

 $\eta = (6.040 \pm 0.118) \times 10^{-10}$

Estimado:

$$\eta_{SM} \sim \frac{J}{T^{12}} \sim 10^{-20}$$

$$J = (m_t^2 - m_c^2)(m_t^2 - m_u^2)(m_c^2 - m_u^2)(m_b^2 - m_s^2)(m_b^2 - m_d^2)(m_s^2 - m_d^2)\mathcal{A}$$

= 3.7 × 10⁴ GeV¹²

 $\mathscr{A} =$ área del triángulo unitario CKM, T = 100 GeV G. W. Hou, 2013

Asimetría Bariónica del Universo (BAU)

$$\eta = \frac{n(B) - n(\bar{B})}{n(\gamma)}$$

0.27

 $^{\rm 4}$ He mass fraction 0.26 $^{\rm 4}$ 0.25 0.24 0.24 0.23

baryon density parameter $\Omega_{
m B}h^2$

 10^{-2}

$$J = (m_t^2 - m_c^2)(m_t^2 - m_u^2)(m_c^2 - m_u^2)(m_b^2 - m_s^2)(m_b^2 - m_d^2)(m_s^2 - m_d^2)\mathcal{A}$$

= 3.7 × 10⁴ GeV¹²

 $\mathscr{A} =$ área del triángulo unitario CKM, T = 100 GeV G. W. Hou, 2013

Momento magnético anómalo del muón a_{μ}

Momento magnético anómalo del muón a_{μ}

$$a_{\mu}^{\text{SM}} = a_{\mu}^{\text{em}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{HVP}} + a_{\mu}^{\text{HLbL}}$$

Momento magnético anómalo del muón a_{μ}

$$a_{\mu}^{\rm SM} = a_{\mu}^{\rm em} + a_{\mu}^{\rm EW} + a_{\mu}^{\rm HVP} + a_{\mu}^{\rm HLbL}$$

$$a_{\mu}^{\text{HVP}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{s_{\text{thr}}}^{\infty} \mathrm{d}s \,\frac{\hat{K}(s)}{s^2} R_{\text{had}}(s),$$
$$R_{\text{had}}(s) = \frac{3s}{4\pi\alpha^2} \sigma [e^+ e^- \to \text{hadrons}(+\gamma)]$$

Measurement of the Pion Form Factor with CMD-3 Detector and Its Implication to the Hadronic Contribution to Muon (g-2)

F. V. Ignatov⁽¹⁾,^{1,2,*} R. R. Akhmetshin,^{1,2} A. N. Amirkhanov,^{1,2} A. V. Anisenkov,^{1,2} V. M. Aulchenko,^{1,2} N. S. Bashtovoy,¹ D. E. Berkaev,^{1,2} A. E. Bondar,^{1,2} A. V. Bragin,¹ S. I. Eidelman,^{1,2} D. A. Epifanov,^{1,2} L. B. Epshteyn,^{1,2,3} A. L. Erofeev,^{1,2} G. V. Fedotovich,^{1,2} A. O. Gorkovenko,^{1,3} F. J. Grancagnolo,⁴ A. A. Grebenuk,^{1,2} S. S. Gribanov,^{1,2} D. N. Grigoriev,^{1,2,3} V. L. Ivanov,^{1,2} S. V. Karpov,¹ A. S. Kasaev,¹ V. F. Kazanin,^{1,2} B. I. Khazin,¹ A. N. Kirpotin,¹ I. A. Koop,^{1,2} A. A. Korobov,^{1,2} A. N. Kozyrev,^{1,2,3} E. A. Kozyrev,^{1,2} P. P. Krokovny,^{1,2} A. E. Kuzmenko,¹ A. S. Kuzmin,^{1,2} I. B. Logashenko,^{1,2} P. A. Lukin,^{1,2} A. P. Lysenko,¹ K. Yu. Mikhailov,^{1,2} I. V. Obraztsov,^{1,2} V. S. Okhapkin,¹ A. V. Otboev,¹ E. A. Perevedentsev,^{1,2} Yu. N. Pestov,¹ A. S. Popov,^{1,2} G. P. Razuvaev,^{1,2} Yu. A. Rogovsky,^{1,2} A. A. Ruban,¹ N. M. Ryskulov,¹ A. E. Ryzhenenkov,^{1,2} A. V. Semenov,^{1,2} A. I. Senchenko,¹ P. Yu. Shatunov,¹ Yu. M. Shatunov,¹ V. E. Shebalin,^{1,2} D. N. Shemyakin,^{1,2} B. A. Shwartz,^{1,2} D. B. Shwartz,^{1,2} A. L. Sibidanov,⁵ E. P. Solodov,^{1,2} A. A. Talyshev,^{1,2} M. V. Timoshenko,¹ V. M. Titov,¹ S. S. Tolmachev,^{1,2} A. I. Vorobiov,¹ Yu. V. Yudin,^{1,2} I. M. Zemlyansky,¹ D. S. Zhadan,¹ Yu. M. Zharinov,¹ and A. S. Zubakin¹

(CMD-3 Collaboration)

¹Budker Institute of Nuclear Physics, SB RAS, Novosibirsk 630090, Russia
 ²Novosibirsk State University, Novosibirsk 630090, Russia
 ³Novosibirsk State Technical University, Novosibirsk 630092, Russia
 ⁴Instituto Nazionale di Fisica Nucleare, Sezione di Lecce, Lecce, Italy
 ⁵University of Victoria, Victoria, BC V8W 3P6, Canada

Received 26 September 2023; revised 6 March 2024; accepted 2 May 2024; published 4 June 2024)

 $a_{\mu}(\exp) - a_{\mu}^{SM}(CMD-32\pi) = 49(55) \times 10^{-11}.$

Desafíos y problemas del SM

¿Qué le falta al Modelo Estándar?

- !Los neutrinos son masivos!
- iExiste la materia oscura!
- ¿Cual es el origen de la asimetría de materia-antimateria?

$\begin{array}{c} \text{!Los neutrinos tienen} \\ \text{masa!} \Longrightarrow \end{array}$

☆ ċSon su propia antipartícula? (Dirac ó Majorana)
 ☆ ċViolación de CP en el sector leptónico? →BAU
 ☆ ċSiguen el mismo patrón de masas generaciones?
 ☆ ċComo obtienen su masa (Higgs u otro?)

¿Qué le falta al Modelo Estándar?

- !Los neutrinos son masivos!
- iExiste la materia oscura!
- ¿Cual es el origen de la asimetría de materia-antimateria?

$\begin{array}{c} \text{!Los neutrinos tienen} \\ \text{masa!} \Longrightarrow \end{array}$

☆ ¿Son su propia antipartícula? (Dirac ó Majorana)
 ☆ ¿Violación de CP en el sector leptónico? →BAU
 ☆ ¿Siguen el mismo patrón de masas generaciones?
 ☆ ¿Como obtienen su masa (Higgs u otro?)

Preguntas:

- * ¿Por qué el quark top es un billón de veces mas pesado que el neutrino?
- Qué explica la diversidad de sabores de las partículas?
- ***** ¿Que estabiliza a la masa del Higgs?
- * ¿Qué explica la diferencia entre las constantes de acoplamiento?

Qué relación existe entre las masas, mezclas y acoplamientos de las partículas?

¿Como descubrir nuevas partículas o interacciones?

Frontera de la Alta Energía, producción directa (LHC, Tevatron,...)

Frontera de la Alta Precisión, <mark>producción</mark> indirecta (Belle II, g-2, LHCb...)

6000000

0000001

.....

¿Como descubrir nuevas partículas o interacciones?

- The whole history of physics proves that a new discovery is quite likely lurking in the next decimal place... (F. K. Richtmeyer, 1931).

Tomado de S. L. Glashow, arXiv:1305.5422

Teoría y experimentos de los próximos 20 años

♦ Esclarecer el problema de las anomalías: NF ó fluctuaciones
 ♦ Esclarecer la naturaleza de ν's, determinar su espectro, si δ_{CP} ≠ 0
 ♦ ċExisten relaciones entre masas, mezclas, acoplos y cual es el origen?
 ♦ ċEs estable el vacío del campo de Higgs, cuanto vale λ, EWPhT?
 ♦ ċExisten nuevas partículas que expliquen el problema DM?
 ♦ ċQué hace que el Higgs tenga una masa tan "pequeña"?

- ***** Una fábrica de Higgses (e^+e^- entre 90 y 350 GeV)
- * Colisionadores de muones
- * DUNE
- * Experimentos en la Frontera de Alta Precisión (BelleII, LHCb,...)
- * Colisionador con 10 TeV pCM
- * Experimentos bajo costo para LFV, LNV, EDM....

Draft Pathways to Innovation and Discovery in Particle Physics

Report of the 2023 Particle Physics Project Prioritization Panel

https://www.usparticlephysics.org/2023-p5-report/

https://home.cern/sites/default/files/2020-06/ 2020 Update European Strategy.pdf

EUROPEAN STRATEGY FOR PARTICLE PHYSICS

Planeación a 10-20 años, identificación prioridades, recomendaciones

Draft Pathways to Innovation and Discovery in Particle Physics

Report of the 2023 Particle Physics Project Prioritization Panel

Plan Nacional de Investigación en Física de Altas Energías

RED FAE 2014

https://www.usparticlephysics.org/2023-p5-report/

https://home.cern/sites/default/files/2020-06/ 2020 Update European Strategy.pdf

European Strategy

EUROPEAN STRATEGY FOR PARTICLE PHYSICS

¿Por qué el universo es como es y no de otra forma?

Sólo 1% viene del mecanismo de Higgsipero muy importante!

¿Por qué el universo es como es y no de otra forma?

$$m_n = 2m_d + m_u + E_g$$

$$m_p = 2m_u + m_d + E_g + \delta M_{em} \qquad \Longrightarrow \qquad m_n - m_p = m_d - m_u - 1.3 \text{ MeV}$$

$$\underbrace{m_n - m_p}_{2.6 \text{ MeV}} = m_d - m_u - 1.3 \text{ MeV}$$

"The eighteen arbitrary parameters of the standard model in your everyday life", Robert N. Cahn, Rev. Mod. Phys. (1996)

Stability of matter: $m_d > m_u \implies$ proton es estable ¿Como el Higgs le da más masa al **d** que al **u**?
$$\begin{array}{c} m_{e}, m_{\mu}, m_{\tau} \\ m_{u}, m_{c}, m_{t} \\ m_{d}, m_{s}, m_{b} \\ \alpha_{em}, G_{F}, \alpha_{s} \\ \theta_{12}, \theta_{13}, \theta_{23}, \delta_{CP} \\ v, m_{H} \text{ or } \lambda \end{array}$$

13 provienen del sector de Yukawa con el RES

$$\mathscr{L}_{Y} = \mathscr{g}_{ij} \overline{\psi}_{i} \psi_{j} \phi$$

$$\frac{\mathscr{g}_{ij} \nabla}{\sqrt{2}} \overline{\psi}_{i} \psi_{j} - \frac{G_{F}}{\sqrt{2}} V_{ij} \overline{\psi}_{ui} \gamma_{\mu} (1 - \gamma_{5}) \psi_{dj} W^{\mu} + h.c.$$

Yukawa: El origen de buena parte del problema del sabor.

- ¿Cual es su origen?.
- ¿Porqué tienen esos valores observados?
- ¿Relación entre origen común de las masas y lo que distingue materia de antimateria?

¿Curiosidades o guías?

1. Y. Koide, PhysLett B (1983): a preon model for quarks and leptons

$$m_e + m_\mu + m_\tau = \frac{2}{3} \left(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau} \right)^2$$

 $\implies m_{\tau} = 1776.97 \text{ MeV}$ (1776.93 ± 0.0.09) MeV PDG 2024

¿Curiosidades o guías?

1. Y. Koide, PhysLett B (1983): a preon model for quarks and leptons

$$m_e + m_\mu + m_\tau = \frac{2}{3} \left(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau} \right)^2$$

 $\implies m_{\tau} = 1776.97 \text{ MeV}$ (1776.93 ± 0.0.09) MeV PDG 2024

2. arXiv:1305.4208

$$m_{H}^{2} + m_{W}^{2} + m_{Z}^{2} + \sum_{f=q,l} m_{f}^{2} = v^{2} = 1/(\sqrt{2}G_{F})$$

$$2\lambda + \frac{g^{2}}{2} + \frac{g^{2} + g^{2}}{2} + \sum_{f=q,l} \frac{y_{f}^{2}}{2} = 1$$

Mientras tanto...

Disfrutemos de entender la naturaleza por medio de una teoría altamente predictiva,

- 🗹 Buscar poner a prueba sus predicciones alternativas,
- Star atentos a los nuevos resultados experimentales,
- Markov Buscar soluciones (no)convencionales a las anomalías,
- 🗹 No dejar de pensar en sus preguntas fundamentales.

"Para hacer buena investigación, no basta con ser inteligente o estar bien preparado. Es necesario conocer sus límites y elegir temas difíciles pero que sabes que puedes resolver"

IUn placer compartir sus observaciones!

Extras.....

For a_μ^{win}
> BABAR+CMD-3+τ are 2.9σ below lattice
↔ 4.2σ (with KLOE but w/o CMD-3, τ, see page 18)
> KLOE is 5.4σ (wide) or 5.8σ (peak) below lattice

Z. Zhang, TI April 2024

Una larga historia hecha corta

< 1928: protones (p), electrones (e^-) y fotones (γ)+ isótopos

1928: Dirac propone su ec. para electrones $\rightarrow \exists e^+, \mu_e = eg/2m_e, g = 2$ y QED

- **1930:** Pauli, propone la existencia del neutrino
- **1932:** Anderson, descubrimiento del positrón (e^+)
- **1932:** Chadwick, descubrimiento del neutrón (n) \rightarrow isótopos
- 1933: Fermi, propone la teoría de interacciones beta
- **1935:** Yukawa propone mesones mantienen unido al núcleo, fuerza nuclear
- **1947:** Descubrimiento del pion ($m_{\pi} \sim 140$ MeV)+ otras partículas

1940's: Schwinger. QED divergencias son renormalizables $\rightarrow g_e - 2 \neq 0, \dots$

- **1961:** Glashow propone el modelo electrodébil SU(2)xU(1), no masas
- **1964:** Gell-Mann modelo de quarks, Greenberg (color)
- **1964:** Higgs, Brout, Englert... \rightarrow int débiles corta distancia
- **1967:** Weinberg+Salam, SSB \rightarrow modelo de leptones y masas de W^{\pm}, Z
- 1971: t'Hooft, el modelo de GSW+SSB es renormalizable
- 1973: Kobayasi-Maskawa modelo de violación de CP
- **1973:** Gell-Mannn, Leutwyler, Fritzsch... QCD, Politzer, Wilczek, Gross...

Fukugita, Yanagida (1986) $\mathcal{L} = \bar{\ell}i \ \partial \ell_{Li} + \bar{e}_{Ri}i \ \partial e_{Ri} + \bar{\nu}_{Ri}i \ \partial \nu_{Ri}$ $+ f_{ij} \bar{e}_{Ri} \ell_{Lj} H^{\dagger} + h_{ij} \bar{\nu}_{Ri} \ell_{Lj} H - \frac{1}{2} M_i \nu_{iR} \nu_{Ri}$

$$\epsilon_{1} = \frac{\Gamma(N_{1} \rightarrow H + \ell_{L}) - \Gamma(N_{1} \rightarrow H^{\dagger} + \ell_{L}^{\dagger})}{\Gamma(N_{1} \rightarrow H + \ell_{L}) + \Gamma(N_{1} \rightarrow H^{\dagger} + \ell_{L}^{\dagger})}$$
$$\approx -\frac{3}{16\pi} \frac{M_{1}}{(hh^{\dagger})_{11}\nu_{F}^{2}} \operatorname{Im}(h^{*}m_{\nu}h^{\dagger}) \sim 0.1 \frac{M_{1}}{M_{3}}$$

 $\mathcal{O}_{B+L} = \Pi_i(q_{L_i}q_{L_i}q_{L_i}\ell_{Li})$

Production mechanisms of the Higgs boson at the LHC (pp)

$$\lambda(Q) < 0 \quad \text{for} \quad Q$$

$$Brout, Engler, Higgs, Guralnik, Hagen, Kibble (1964);$$

$$Weinberg (1967)$$

$$EI \quad \text{sector de Higgs}$$

$$\mathcal{L} = \frac{\Phi(x) = \left(\frac{\phi^{+}(x)}{\frac{1}{\sqrt{2}}\left(v + H(x) + i\chi(x)\right)}\right)}{\left(\frac{1}{\sqrt{2}}\left(v + H(x) + i\chi(x)\right)\right)}$$

$$W(\Phi) = -\mu^{2} \Phi^{+} \Phi + \frac{1}{4} (\Phi^{+} \Phi)^{2} \quad \mu^{2}, \lambda > 0$$

$$En \text{ la norma unitaria: } \Phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix}$$

$$\Phi = v$$

$$W = \frac{1}{2}gv, \quad m_{Z} = \frac{1}{2}\sqrt{g^{2} + g^{\prime 2}}v, \quad m_{\gamma} = 0$$

$$W = \frac{\mu^{2}}{\frac{1}{2}}\frac{H_{22}^{2}}{2^{2}}v^{2}}\frac{H_{1}^{3}}{W_{1}^{4}+\frac{M_{2}^{4}}{4}} + \frac{v^{2}}{4} \left(W + \frac{m_{H}^{2}}{m_{H}^{2}}\right) \left(\frac{v^{2}}{-g_{1}g_{2}} + \frac{v^{2}}{2}\right) \left(\frac{W^{3}}{-g_{1}g_{2}} + \frac{W^{3}}{2}\right) \left($$