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General structure of one-photon two-gluon vertex
in a constant magnetic field

We will denote the one-photon two-gluon vertex as

Γ
𝜇𝜈𝛼

ab
(p1, p2, q). (1)

a, 𝜇

b, 𝜈

B 𝛼

p1

p2

q

Figure: General representation of the
two-gluon one-photon vertex. The
shaded blob represents the effect of a
magnetic field.

There are three properties that we
have to analyze for the structure
on the vertex. These are:

The tensor vertex is
transverse with respect the
momentum.

The tensor is symmetric in
the gluon indexes.

The tensor is invariant under
CP transformation
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Symmetry properties

Transverse property

p1𝜇Γ
𝜇𝜈𝛼

ab
(p1, p2, q) = 0,

p2𝜈Γ
𝜇𝜈𝛼

ab
(p1, p2, q) = 0,

q𝛼Γ
𝜇𝜈𝛼

ab
(p1, p2, q) = 0. (2)

Symmetry under gluon exchange

Γ
𝜇𝜈𝛼

ab
(p1, p2, q) = Γ

𝜈𝜇𝛼

ba
(p2, p1, q). (3)

CP invariance

Ĉ Γ
𝜇𝜈𝛼

ab
Ĉ −1 = (−1)3Γ𝜇𝜈𝛼

ab
,

P̂ Γ
𝜇𝜈𝛼

ab
P̂−1 = (−1)3Γ𝜇𝜈𝛼

ab
. (4)
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Ritus Base

We need to translate the previuos properties to a tensor basis. For
that propurse, we choose the Ritus base3 4

q𝜇

l
𝜇
q ≡ F̂ 𝜇𝛽q𝛽

l
∗𝜇
q ≡ F̂ ∗𝜇𝛽q𝛽

k
𝜇
q ≡ q2

l2q
F̂ 𝜇𝛽F̂𝛽𝜎q

𝜎 + q𝜇, (5)

where

F̂ 𝜇𝛽 ≡ F 𝜇𝛽/|B |, (6)

with F 𝜇𝛽 the electromagnetic field strength tensor, F ∗𝜇𝛽 its dual and
|B | the strength of the magnetic field.

3V. O. Papanyan and V. I. Ritus, Zh. Eksp. Teor. Fiz. 61, 2231 (1971).

4V. O. Papanyan and V. I. Ritus, Zh. Eksp. Teor. Fiz. 65, 1756 (1973).
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Expansion of the vertex in the Ritus base

We now proceed to express the vertex in terms of the external
product of the polarization vectors corresponding to each of the
vector particles. We can repeat the above process for each gauge
particle an obtain

photon 𝛼 → q𝛼, l 𝛼q , l∗𝛼q , k𝛼
q

gluon 𝜇, a → p
𝜇

1a, l
𝜇
p1a, l

∗𝜇
p1a, k

𝜇
p1a

gluon 𝜈, b → p𝜈2b, l 𝜈p2b, l∗𝜈p2b, k𝜈
p2b

. (7)

Therefore, in general the i-th basis element

Γ
𝜇𝜈𝛼

ab i
(p1, p2, q),

corresponds to one of the products of three polarization vectors

Γ
𝜇𝜈𝛼

ab i
(p1, p2, q) ∈

{[
l̂
𝜇
p1a, l̂

∗𝜇
p1a, k̂

𝜇
p1a

]
⊗

[
l̂ 𝜈p2b, l̂∗𝜈p2b, k̂𝜈

p2b

]
⊗

[
l̂ 𝛼q , l̂∗𝛼q , k̂𝛼

q

]}
. (8)
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The imposing of the symmetry in gluon indexes, the CP invariane,
on-shell conditions and conservation of energy-momentum allow us to
write

Γ
𝜇𝜈𝛼

ab
(p1, p2, q)on-shell = a++1 l̂

𝜇
p1a l̂

𝜈
p2b

l̂ 𝛼q + a++2 l̂
∗𝜇
p1a l̂

∗𝜈
p2b

l̂ 𝛼q

+
a++10√
2

(
l̂
𝜇
p1a l̂

∗𝜈
p2b

+ l̂
∗𝜇
p1a l̂

𝜈
p2b

)
l̂∗𝛼q . (9)
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One-loop approximation for the effective
one-photon two-gluon vertex

At leading order in the strong 𝛼s and electromagnetic 𝛼em couplings,
the scattering process involving two gluons and a photon, either
gluon fusion or splitting, is depicted in Figure 2

A
p1

p2

q

B
p1

p2

q

Figure: One-loop diagrams contributing to the two-gluon one-photon
vertex. Diagram B represents the charge conjugate of diagram A. The
four-momentum vectors are chosen such that q = p1 + p2.
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Schwinger phase

Each internal line corresponds to a fermion propagator in the
presence of a magnetic field, which can be written as

S (x , x ′) = Φ(x , x ′)
∫

d4p

(2𝜋)4 e
−ip · (x−x ′ )S (p), (10)

where Φ(x , x ′) is the Schwinger’s phase factor given by

Φ(x , x ′) = exp

{
iqf

∫ x

x ′
d𝜉𝜇

[
A𝜇 + 1

2
F𝜇𝜈 (𝜉 − x ′)𝜈

]}
, (11)

where qf is the charge of the quark with flavor f .
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The translationally invariant part of the propagator can be written,
using Schwinger’s proper time representation, as

S (p) =

∫ ∞

0

ds

cos(qf Bs)
e
is

(
p2
∥+p

2
⊥

tan(qf Bs )
qf Bs

−m2
f
+i 𝜖

)

×
[
e iqf BsΣ3

(
mf + /p ∥

)
+ /p⊥
cos(qf Bs)

]
, (12)

where mf is the mass of the quark with flavor f and Σ3 = i𝛾1𝛾2.
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General expression

The explicit expression for the sum of the diagrams in Fig. 2 is
written as

Γ
𝜇𝜈𝛼

ab
= −ig2qf

∫
d4xd4yd4z

∫
d4r

(2𝜋)4
d4s

(2𝜋)4
d4t

(2𝜋)4

× e−it · (y−x )e−is · (x−z )e−ir · (z−y )e−ip1 ·ze−ip2 ·ye iq ·x

×
{
Tr

[
𝛾𝛼S (s)𝛾𝜇taS (r )𝛾𝜈tbS (t)

]
+ Tr

[
𝛾𝛼S (t)𝛾𝜈tbS (r )𝛾𝜇taS (s)

] }
× Φ(x , y )Φ(y , z)Φ(z , x), (13)

where g is the quark-gluon coupling, ta = 𝜆a/2, tb = 𝜆b/2 with 𝜆a

and 𝜆b being Gell-Mann matrices.
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After a lengthy but straightforward calculation we get

Γ
𝜇𝜈𝛼

ab
= −i

g2q2f B

(2𝜋2) Tr[tatb]𝛿4 (p1 + p2 − q)
∫ ∞

0

ds1ds2ds3

c21c
2
2c

2
3

(
e−ism

2
f

s

)
×

(
1

t1t2t3 − t1 − t2 − t3

)
e
− i

s (s1s3𝜔2
p1
+s2s3𝜔2

p2
+s1s2𝜔2

q) q2⊥
𝜔2
q

× e
− i

𝜔2
q

q2⊥
qf B

(
1

t1t2t3−t1−t2−t3

)
(t1t3𝜔2

p1
+t2t3𝜔2

p2
+t1t2𝜔2

q)

×
19∑︁
j=1

(
T

𝜇𝜈𝛼

Aj
+ T

𝜇𝜈𝛼

Bj

)
, (14)
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where

cj ≡ cos
(
qf Bsj

)
,

tj ≡ tan
(
qf Bsj

)
,

ej ≡ cje
isign(qf B ) |qf B |sjΣ3 , (15)

and s = s1 + s2 + s3. Eq.(14) represents the exact one-loop result for
the two-gluons one-photon vertex in the presence of a constant
magnetic field of arbitrary strength. Its large field approximation has
been already explored5 6. Now, we are interested in the region
m2

f < |qf B | < q2⊥.

5Phys. Rev. D 96, 119901 (2017)

6Phys. Rev. C 106, 064905
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We can perform a change of variable si → svi , where
v1 + v2 + v3 = 1. Then, we can write the integral as

19∑︁
j=1

∫
ds dv1dv2 K e iArg

(
T

𝜇𝜈𝛼

Aj
+ T

𝜇𝜈𝛼

Bj

)
, (16)

K = −i
g2q2f B

(2𝜋2) Tr[tatb]
s

c21c
2
2c

2
3

(
1

t1t2t3 − t1 − t2 − t3

)
(17)

Arg = −s (m2
f ) − s

(
v1 (1 − v1 − v2)𝜔2

p1

+ v2 (1 − v1 − v2)𝜔2
p2 + v1v2𝜔

2
q

) q2⊥
𝜔2
q

− 1

𝜔2
q

q2⊥
|qf B |

(
1

t1t2t3 − t1 − t2 − t3

)
×

(
t1t3𝜔

2
p1 + t2t3𝜔

2
p2 + t1t2𝜔

2
q

)
. (18)
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Aproximation

Now, let us analyze the Arg term,

Arg = −sm2 − s
(
v1v3𝜔

2
p1 + v2v3𝜔

2
p2 + v1v2𝜔

2
q

) q2⊥
𝜔2
q

− 1

𝜔2
q

q2⊥
qB

(
1

t1t2t3 − t1 − t2 − t3

) (
t1t3𝜔

2
p1 + t2t3𝜔

2
p2 + t1t2𝜔

2
q

)
.

(19)
We are going to expand to leading order the second part of the left
side,

Arg = −m2s + q2⊥qB
2s3F (v1, v2), (20)

where

F (v1, v2) =
1

3𝜔2
q

(
v4
1𝜔

2
p1 + 2v3

1

(
(v2 − 1)𝜔2

p1 + v2 (𝜔2
2 − 𝜔2

q)
)

+ v2
1

(
(3v2

2 − 3v2 + 1)𝜔2
p1 + 3(v2 − 1)v2 (𝜔2

2 − 𝜔2
q)

)
+ v1v2

(
2v2

2 − 3v2 + 1
) (
𝜔2
p1 + 𝜔2

2 − 𝜔2
q

)
+ (v2 − 1)2v2

2𝜔
2
2

)
. (21)
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Now, it is convenient to take s → x
qB

Arg = −m2

qB
x + i

q2⊥
qB

x3F (v1, v2) (22)

We can further simplify the expressions recalling that in the
intermediate field regime, terms proportional to m2

f can be neglected.

K = i
g2qf
16𝜋2

Tr[tatb]x csc(x)
× sec(v1x) sec(v2x) sec(x (1 − v1 − v2)), (23)

Arg =
q2⊥

|qf B | x
3F (v1, v2). (24)
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Choose of integration path

Contracting Eq. (14) with the elements of the Ritus base, we obtain
three types of integrals

J1 ≡
∫

dv1dv2dx csc2 (x)e iArgG1 (x , v1, v2), (25)

J2 ≡
∫

dv1dv2dx csc3 (x)e iArgG2 (x , v1, v2), (26)

J3 ≡
∫

dv1dv2dx csc4 (x)e iArgG3 (x , v1, v2). (27)

R

C1

C2

x

𝜃 = 𝜋/6
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In the c1 trajectory, x → Me i 𝜃 , then

Arg = i
q2⊥
qB

M3e i3𝜃F (v1, v2) (28)

In the region where 0 < 𝜃 < 𝜋
6 , the real part of Arg is always

negative. So, in the limit where M is big, e eArg → 0.
In the other hand, in c2 trajectory, x →i 𝜋

6 , so

Arg = i
q2⊥
qB

𝜏3e i 𝜋/2F (v1, v2) = − q2⊥
qB

𝜏3F (v1, v2) (29)
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Therefore, the integral over x on the real axis can be written as∫ ∞

0
dx cscj+1 (x)e iArgGj (x , v1, v2)

=
∑︁

Res
(
cscj+1 (x)e iArgGj (x , v1, v2), n𝜋

)
−

∫ ∞

0
d𝜏 cscj+1 (𝜏e i 𝜋/6)

× e
−

q2
⊥

qf B
𝜏3F (v1 ,v2 )Gj (𝜏e i 𝜋/6, v1, v2). (30)
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Stationary phase approximation

The strategy to estimate the integral over v1, v2 follows as this:
Let us consider ®v = (v1, v2), then we have an integral in the form∫

dv1dv2 F (v1, v2)e i𝜒𝜓 (v1 ,v2 ) , (31)

where the parameter 𝜒 =
q2
⊥

qf B
and the phase 𝜓 has a set of critical

points Υ = (v0
1 , v

0
2 ) where ∇𝜓(v0

1 , v
0
2 ) = 0. Therefore, we can make

use of the stationary phase approximation, which gives the
asymptotic behaviour of this integral for 𝜒 ≫ 1, as∫

d2v F (v)e i𝜒𝜓 (v) ≈
∑︁
®v 0∈Υ

e i𝜒𝜓 ( ®v0 )
��det(Hess(𝜓( ®v0))

) ��−1/2
× e i

𝜋
4 sign(Hess(𝜓 ( ®v0 ) ) )

(
2𝜋

𝜒

)2/2
F (®v0)

+ O(𝜒−1/2), (32)
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Coefficient |a++1 |2 as function of the photon energy

|a
1+
+
2
[G
eV

6
]

Coherent sum
Incoherent sum
v1=1/2,v2=1/2

v1=1/2,v2=0

v1=0,v2=1/2

1 2 3 4 5 6 7 8

50

100

150

200

250

300

ωq [GeV]

𝜃 = 𝜋/2.
𝜔p1 = 0.5 GeV.

|eB | = m2
𝜋 .
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Coefficient |a++2 |2 as function of the photon energy

|a
2+
+
2
[G
eV

6
]

Coherent sum
Incoherent sum
v1=1/2,v2=0

v1=0,v2=1/2

1 2 3 4 5 6 7 8
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|eB | = m2
𝜋 .
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Coefficient |a++10 |
2 as function of the photon energy

|a
10+
+
2
[G
eV

6
]

Coherent sum
Incoherent sum
v1=1/2,v2=1/2

v1=0,v2=1/2

1 2 3 4 5 6 7 8

200

400
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800

1000

1200

ωq [GeV]

𝜃 = 𝜋/2.
𝜔p1 = 0.5 GeV.

|eB | = m2
𝜋 .

The
contribution
from the three
light quark
flavors u, d , s, is
accounted for.
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Summary

The vertex tensor was expanded in terms of the Ritus base.

The symmetries of the vertex were used to reduce from 27 to 3
the basis coefficients.

The approximation to intermediate field was performed to each
coefficient.

The behavior of the coefficient as function of different was
analysed.
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Appendix A: Explicit form of traces

T
𝜇𝜈𝛼

A1
+ T

𝜇𝜈𝛼

B1
= Tr[𝛾𝜇 /Aa𝛾

𝛼 /Ab𝛾
𝜈 /Ac ] + Tr[𝛾𝜇 /Bc𝛾

𝜈 /Bb𝛾
𝛼 /Ba],

T
𝜇𝜈𝛼

A2
+ T

𝜇𝜈𝛼

B2
= m2

f

{
Tr[𝛾𝜇e1𝛾

𝛼e2𝛾
𝜈 /Ac ] + Tr[𝛾𝜇 /Bc𝛾

𝜈e2𝛾
𝛼e1]

}
,

T
𝜇𝜈𝛼

A3
+ T

𝜇𝜈𝛼

B3
= m2

f

{
Tr[𝛾𝜇e1𝛾

𝛼 /Ab𝛾
𝜈e3] + Tr[𝛾𝜇e3𝛾

𝜈 /Bb𝛾
𝛼e1]

}
,

T
𝜇𝜈𝛼

A4
+ T

𝜇𝜈𝛼

B4
= m2

f

{
Tr[𝛾𝜇 /Aa𝛾

𝛼e2𝛾
𝜈e3] + Tr[𝛾𝜇e3𝛾

𝜈e2𝛾
𝛼 /Ba]

}
,

T
𝜇𝜈𝛼

A5
+ T

𝜇𝜈𝛼

B5
=

i

s

{
Tr[𝛾𝜇 /Aa𝛾

𝛼e2𝛾
𝜈
∥ e3] + Tr[𝛾𝜇e3𝛾

𝜈
∥ e2𝛾

𝛼 /Ba]
}
,

T
𝜇𝜈𝛼

A6
+ T

𝜇𝜈𝛼

B6
=

i

s

{
Tr[𝛾𝜇

∥ e1𝛾
𝛼 /Ab𝛾

𝜈e3] + Tr[𝛾𝜇

∥ e3𝛾
𝜈 /Bb𝛾

𝛼e1]
}
,

T
𝜇𝜈𝛼

A7
+ T

𝜇𝜈𝛼

B7
=

i

s

{
Tr[𝛾𝜇e1𝛾

𝛼
∥ e2𝛾

𝜈 /Ac ] + Tr[𝛾𝜇 /Bc𝛾
𝜈e2𝛾

𝛼
∥ e1]

}
,

T
𝜇𝜈𝛼

A8
+ T

𝜇𝜈𝛼

B8
= − i

s

{
Tr[𝛾𝜇 /Aa𝛾

𝛼e2𝛾
𝜈e3] + Tr[𝛾𝜇e3𝛾

𝜈e2𝛾
𝛼 /Ba]

}
,

T
𝜇𝜈𝛼

A9
+ T

𝜇𝜈𝛼

B9
= − i

s

{
Tr[𝛾𝜇e1𝛾

𝛼 /Ab𝛾
𝜈e3] + Tr[𝛾𝜇e3𝛾

𝜈 /Bb𝛾
𝛼e1]

}
,
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T
𝜇𝜈𝛼

A10
+ T

𝜇𝜈𝛼

B10
= − i

s

{
Tr[𝛾𝜇e1𝛾

𝛼e2𝛾
𝜈 /Ac ] + Tr[𝛾𝜇 /Bc𝛾

𝜈e2𝛾
𝛼e1]

}
,

T
𝜇𝜈𝛼

A11
+ T

𝜇𝜈𝛼

B11
=

iqf B
t

{
Tr[𝛾𝜇 /Aa𝛾

𝛼𝛾𝜈] + Tr[𝛾𝜇𝛾𝜈𝛾𝛼 /Ba]
}
,

T
𝜇𝜈𝛼

A12
+ T

𝜇𝜈𝛼

B12
=

iqf B
t

{
Tr[𝛾𝜇𝛾𝛼 /Ab𝛾

𝜈] + Tr[𝛾𝜇𝛾𝜈 /Bb𝛾
𝛼]

}
,

T
𝜇𝜈𝛼

A13
+ T

𝜇𝜈𝛼

B13
=

iqf B
t

{
Tr[𝛾𝜇𝛾𝛼𝛾𝜈 /Ac ] + Tr[𝛾𝜇 /Bc𝛾

𝜈𝛾𝛼]
}
,

T
𝜇𝜈𝛼

A14
+ T

𝜇𝜈𝛼

B14
= − iqf B

t

{
Tr[𝛾𝜇 /Aa𝛾

𝛼𝛾𝜈
⊥] + Tr[𝛾𝜇𝛾𝜈

⊥𝛾
𝛼 /Ba]

}
,

T
𝜇𝜈𝛼

A15
+ T

𝜇𝜈𝛼

B15
= − iqf B

t

{
Tr[𝛾𝜇

⊥𝛾
𝛼 /Ab𝛾

𝜈] + Tr[𝛾𝜇
⊥𝛾

𝜈 /Bb𝛾
𝛼]

}
,

T
𝜇𝜈𝛼

A16
+ T

𝜇𝜈𝛼

B16
= − iqf B

t

{
Tr[𝛾𝜇𝛾𝛼

⊥𝛾
𝜈 /Ac ] + Tr[𝛾𝜇 /Bc𝛾

𝜈𝛾𝛼
⊥ ]

}
,
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T
𝜇𝜈𝛼

A17
+ T

𝜇𝜈𝛼

B17
=

iqf B t1
2t

{
Tr[𝛾𝜇 /Aa𝛾

𝛼𝛾
𝛽
⊥𝛾

𝜈𝛾𝜎
⊥ ]F̂𝛽𝜎

+ Tr[𝛾𝜇𝛾𝜎
⊥ 𝛾𝜈𝛾

𝛽
⊥𝛾

𝛼 /Ba]F̂𝜎𝛽

}
,

T
𝜇𝜈𝛼

A18
+ T

𝜇𝜈𝛼

B18
= − iqf B t2

2t

{
Tr[𝛾𝜇𝛾

𝛽
⊥𝛾

𝛼 /Ab𝛾
𝜈𝛾𝜎

⊥ ]F̂𝛽𝜎

+ Tr[𝛾𝜇𝛾𝜎
⊥ 𝛾𝜈 /Bb𝛾

𝛼𝛾
𝛽
⊥]F̂𝜎𝛽

}
,

T
𝜇𝜈𝛼

A19
+ T

𝜇𝜈𝛼

B19
=

iqf B t3
2t

{
Tr[𝛾𝜇𝛾

𝛽
⊥𝛾

𝛼𝛾𝜎
⊥ 𝛾𝜈 /Ac ]F̂𝛽𝜎

+ Tr[𝛾𝜇 /Bc𝛾
𝜈𝛾𝜎

⊥ 𝛾𝛼𝛾
𝛽
⊥]F̂𝜎𝛽

}
. (33)
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where

/Aa = −
(
s3𝜔p1 + s2𝜔q

s𝜔q

)
/q ∥e1 +

(t3𝜔p1 + t2𝜔q)/q⊥ − t2t3𝜔p2𝛾
𝜎F̂𝜎𝛽q

𝛽
⊥

t𝜔q

/Ab =

(
s1𝜔q + s3𝜔p2

s𝜔q

)
/q ∥e2 −

(t3𝜔p2 + t1𝜔q)/q⊥ + t1t3𝜔p1𝛾
𝜎F̂𝜎𝛽q

𝛽
⊥

t𝜔q

/Ac =

(
s1𝜔p1 − s2𝜔p2

s𝜔q

)
/q ∥e3 +

(−t1𝜔p1 + t2𝜔p2 )/q⊥ + t1t3𝜔q𝛾
𝜎F̂𝜎𝛽q

𝛽
⊥

t𝜔q

/Ba =

(
s3𝜔p1 + s2𝜔q

s𝜔q

)
/q ∥e1 −

(t3𝜔p1 + t2𝜔q)/q⊥ + t2t3𝜔p2𝛾
𝜎F̂𝜎𝛽q

𝛽
⊥

t𝜔q

/Bb = −
(
s1𝜔q + s3𝜔p2

s𝜔q

)
/q ∥e2 +

(t3𝜔p2 + t1𝜔q)/q⊥ − t1t3𝜔p1𝛾
𝜎F̂𝜎𝛽q

𝛽
⊥

t𝜔q

/Bc = −
(
s1𝜔p1 − s2𝜔p2

s𝜔q

)
/q ∥e3 +

(t1𝜔p1 − t2𝜔p2 )/q⊥ + t1t3𝜔q𝛾
𝜎F̂𝜎𝛽q

𝛽
⊥

t𝜔q
.

t = t1t2t3 − t1 − t2 − t3
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