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General structure of one-photon two-gluon vertex

in a constant magnetic field

We will denote the one-photon two-gluon vertex as

T (p1s p2. Q).

Figure: General representation of the
two-gluon one-photon vertex. The
shaded blob represents the effect of a
magnetic field.

(1)

There are three properties that we
have to analyze for the structure
on the vertex. These are:

@ The tensor vertex is
transverse with respect the
momentum.

@ The tensor is symmetric in
the gluon indexes.

@ The tensor is invariant under
CP transformation
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Transverse property

P18y (1, P2, Q) 0,
P2y (p1, 2, @) 0,
an H (p1, P2, q)

Symmetry under gluon exchange

L (prp2. @) = T, X (pa, p1. Q).

CP invariance
cryelt = -1y,
provept o (c1prae

(4)
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coefficients

Ritus Base

We need to translate the previuos properties to a tensor basis. For
that propurse, we choose the Ritus base® #

q*

= FHP qg

= F+Bqg
2

Ky = 7—2F”'3F5,7q"+q", (5)
q

where
FHP = FHB B, (6)

with FHP the electromagnetic field strength tensor, F**# its dual and
|B| the strength of the magnetic field.

3v. 0. Papanyan and V. I. Ritus, Zh. Eksp. Teor. Fiz. 61, 2231 (1971).
4v. 0. Papanyan and V. I. Ritus, Zh. Eksp. Teor. Fiz. 65, 1756 (1973).
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ufé?e”:izzﬁ Expansion of the vertex in the Ritus base

We now proceed to express the vertex in terms of the external
product of the polarization vectors corresponding to each of the
vector particles. We can repeat the above process for each gauge
particle an obtain

photona — ¢¢, l(‘,’, /;", k(;’

uooe
gluon u, a —  pi.. Ipas Ipas Kpa
v 4 *V v
gluonv, b — pj,, Ipzb, Ip2b, kpzb. (M)

Therefore, in general the i-th basis element

T4 (1, p2, ),

corresponds to one of the products of three polarization vectors

e ) € [T B Kaa| @ |2y B K2
e |l e k) (8)
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The imposing of the symmetry in gluon indexes, the CP invariane,
on-shell conditions and conservation of energy-momentum allow us to
write

MUY a _ I TRV P Ry
Fab (P1, P2s Qonshar = a1 Ipla/;,’zblg"'az plal;vblg

A0 (tu fov iy | P
+ $(/pla/;;b+/p{‘a/;2b) e (9)
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v-;;;n-;i;;x; One-loop approximation for the effective
one-photon two-gluon vertex

At leading order in the strong as and electromagnetic aem couplings,
the scattering process involving two gluons and a photon, either
gluon fusion or splitting, is depicted in Figure 2
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Figure: One-loop diagrams contributing to the two-gluon one-photon
vertex. Diagram B represents the charge conjugate of diagram A. The
four-momentum vectors are chosen such that g = p1 + p>.
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Schwinger phase

Each internal line corresponds to a fermion propagator in the
presence of a magnetic field, which can be written as

S(x,x") = D(x,x) / ﬁe-fp'<X-X’>5(p) (10)
’ ’ (21)* ’
where ®@(x, x”) is the Schwinger’s phase factor given by

@d(x,x") = exp {iqf //Xdé“” [A” + %Fuv(‘f - X’)V]}’ (11)

where gr is the charge of the quark with flavor f.

10/41



The translationally invariant part of the propagator can be written,
using Schwinger's proper time representation, as

S(p) = / VA5 is(pienr TR mivie)
o cos(qrBs)
X

idrBsZs (mf"'P") (12)

P,
" COS(qus)] '

where my is the mass of the quark with flavor f and X3 = iy1y».
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General expression

Introduction The explicit expression for the sum of the diagrams in Fig. 2 is
neral structure written as

d*r d*s d*t
uva .2 4 14 44
nyt = i [atdtdts [ o e G

X e—it-(y—x) e—is-(x—z) e—ir-(z—y) e—ipl-ze—ipz-yeiq-x

x AT [raS(1yutaS(w S (0)]

+ T [raSOYBS(ynLSe)] |

X O(x,y)®(y, z)D(z, x), (13)

approximation

where g is the quark-gluon coupling, t2 = 12/2, tb = A?/2 with 2
and A? being Gell-Mann matrices.
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After a lengthy but straightforward calculation we get

5 o . —ism?
22¢2B dsydsydss | e
e = i Tr[t,t,]6% (b1 + p2 - q) 222
(272) 0 494G s
) 2
y 1 e—é(5153(1),2,14'5253‘1),2)2"'51520)!21)%%
tibts—ti—th— 13
i 9 1 2 ; a
X e_Zq"’qf—s(m)(t1t3“"’1“2t3“"’2+t1t2w")
19
uva 2aded
x (Thre e T, (14)
J=1
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Introduction Where

General structure
of the vertex

¢ = cos(grBsj),
t; = tan(qrBs)),
_ isign (qrB)lqrBls;
g = gelEnaBabls, (15)

approximation

and s = 51 + 5 + s3. Eq.(14) represents the exact one-loop result for
the two-gluons one-photon vertex in the presence of a constant
magnetic field of arbitrary strength. Its large field approximation has
been already explored® 6. Now, we are interested in the region

m? < |qrB| < q7.

tensor is

coefficients

5Phys. Rev. D 96, 119901 (2017)
6phys. Rev. C 106, 064905
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We can perform a change of variable s; — sv;, where
vl+v2+v3 =1 Then, we can write the integral as

Introduction 19
D / ds dvidvy K e (ThYT + THY?), (16)
=1
2.2
8°q;B s 1
K=-i Tr(tats] 17
omrosmation (2r2) PR btz -t -t t3 (17)

Arg = —s(m?) -5 (v1(1 —vi — v2)a)f,1

2
q
+ u(l-v— w2 +nnw?) =
P2 a] 2
q

1 q° ( 1 )
w3 grBl \tibts —t1 —tr — t3

X (tl t3a)f,1 + t2t3wf,2 + 1t tgwf,) . (18)
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Now, let us analyze the Arg term,

2
q
Arg = —sm®—s Vi V3a)2 + V2V3w2 +vi V2w2 ==
p1 p2 q) 2
Wy
Gty RS 1 qi 1 (t " 2 tot 2 HE 2
s e - — = 13wy, + hizw, +ihw )
Expnion o e a)%, gB \titrts —t1 —tr — t3 pr P 7

base (19)
We are going to expand to leading order the second part of the left
Schwinger phase side,

rroimaten Arg = —-m?s + q> B> F (v1, wo), (20)
Choose of integration
path g where
Stationary phase
S 1
F(vi,w) = 2 (vfwf,l + 2vf’ ((vz l)a)p1 + VQ(u)g - wf,))
Wq
+ V12 ((3v22 -3wn+ 1)(1),2Jl +3(va — 1)VQ(w§ - wg))
+viva (2v2 = 3w +1) (wf,l + w3 — w,zq)
2
+ (v -1 Zw3). (21) .,



Now, it is convenient to take s — qLB

Arg = = 1 (v ) (22)
9B 4B 1, V2
We can further simplify the expressions recalling that in the
intermediate field regime, terms proportional to mf, can be neglected.

2
.8°9r
K =
"Ton2
X sec(vyx) sec(vax) sec(x(1l — vy — vp)), (23)
2
q1
Arg =
" TarB

Tr[tatp]x csc(x)

X3F(v1, v). (24)
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Contracting Eq. (14) with the elements of the Ritus base, we obtain
three types of integrals

Jl = / dVldVQdX CSC2(X)eiArg61(X, Vi, V2), (25)
Symmetry properties
e b= / dvidvadx csc®(x)e A8 Gy(x, i, vo), (26)
S = / dvidvadx csc*(x)e A8 Gs(x, vi, va). (27)
Schwinger phase
e 4 Ix

Choose of integration
path

Stationary phase
approximation
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In the cl trajectory, x — Me'? then
i,
Arg = I'—E M3e?F (v, vo) (28)
q

In the region where 0 < 6 < Z, the real part of Arg is always
negative. So, in the limit where M is blg e efre 0.
In the other hand, in c2 trajectory, x —' $,s0

2

3 "2F (v1, vp) = _Z_BT3F(V1’VQ) (29)

QJ_
A —
rg = qu
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Therefore, the integral over x on the real axis can be written as
0 . .
/0 dx csd/*t (x) e B G (x, vi, va)
= Z Res (cschr1 (X)eiArng(x, Vi, Vo), nn)
© - -
- / dt csc/*t (re/™/%)
0
2

—q—LTz‘F(Vl v2) in/6
x e arB " Gi(re ™ vy, vy). (30)
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wg Stationary phase approximation

The strategy to estimate the integral over vi, v, follows as this:
Let us consider v = (v1, v»), then we have an integral in the form

/ dvidvs F (v, vz)eiX‘”(Vl’VQ), (31)

where the parameter y = iB and the phase i has a set of critical
points Y = (vl, v9) where Vz,b(vl, ) = 0. Therefore, we can make
use of the stat|onary phase approxnmatlon, which gives the
asymptotic behaviour of this integral for y > 1, as

[ v en st < 5 e der(es(u ()|

voeY
o 2/2
% e i %5 sign(Hess(y (%)) (;) F (Vo)

+0(x ), (32)



Behavior of the
tensor basis
coefficients

Coherent sum
—— Incoherent sum

........ vi=1/2,v,=1/2
------ V1=1/2,V2=0
..... v4=0,v,=1/2
e 0=nm/2.
® wp, =05 GeV.
o |eB| = m2.
1 2 3
wq [GeV]
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Coefficient |a§’+|2 as function of the photon energy

0 06:‘ Coherent sum
T — Incoherent sum
[ |----- v1=1/2,v,=0
0.05r |... v1=0,v,=1/2
go;' [
> 0.04:
O, : e O0=m/2.
(:'—0'03: ® wp =05 GeV.
o [ 2
S 002! o |eB| =m.
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Behavior of the
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coefficients

Coefficient |a’1’a’|2 as function of the photon energy

lais |2 [GeVe]

1200¢
Coherent sum
—— Incoh t
10000 | o
..... v1=0,v,=1/2
800
600¢
400¢
200¢
2 3 4
wq [GeV]

e 0=nm/2.

® wp, =05 GeV.
o |eB| = m2.

@ The

contribution
from the three
light quark
flavors u, d, s, is
accounted for.
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Behavior of the
tensor basis

coefficients

i
— 04
0.2r
A
OGE a I 3n 9
10 4 > 7 -
6

® wp, =0.5 GeV.
] |eB| = msr
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Behavior of the
tensor basis

coefficients

BN
[SRNT B
w

J“|:4

o wp, = 0.5 GeV.
o |eB| = m2.
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0.008

0012 0016
eB [GeV?]

0.02

° wg =4 GeV.
® wp =0.5 GeV.
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° wg =4 GeV.
® wp =0.5 GeV.

Behavior of the .
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coefficients

0008 0012 0016
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0.008
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° wg =4 GeV.
® wp, =05 GeV.
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° wg =4 GeV.
® wp =05 GeV.

Behavior of the
tensor basis
coefficients

0.008 0.012 0.016 0.02
eB [GeV?]
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@ The vertex tensor was expanded in terms of the Ritus base.

@ The symmetries of the vertex were used to reduce from 27 to 3
the basis coefficients.

@ The approximation to intermediate field was performed to each
coefficient.

@ The behavior of the coefficient as function of different was
analysed.

Behavior of the
tensor basis
coefficients
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TR+ Te" = Ty Ay Ay  Ac) + Tr[y* By’ Boy* Ba).,

TS+ T = mp{Triy ey ey Al + Tr[y* By ey el},
T+ T = mi{Trly ety Apy” es] + Tr[y*esy” Bry“enl},
TRO+TH " = mp{Triy Ay ey’ es] + Trly* esy” ey Bal}

i
Tos +Tgs" = ;{Tr[y"ﬂayaezyﬁea] +Tr[7”eayﬁezy"$a]},
It

Thae +Tge = {Tr[yﬂ‘ ery " Apy es] + Trly| ew”%w"el}

i
s

T + Tt = {Tr[y" eryjey” Acl + Tr[v"%cyvezyﬁ’eﬂ} :

]

S

i

Tas *+Tss = — AT ey ey el + Ty ey ey " Bil},
i

Toao +Tge = - {Triy* ey Apy” es] + Tr[y* esy” Buyerl}
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S Thwo + Tao = —é {Triy*ery®ery” Ac) + Try By ey el }
Onedoop TS 4 Tt = BB Ty ALy y” ] + Tr[yHy v 8.1},
THS & Tt = BB (Te[yiy @ Ay ] + Triyiy” Buy 1},
TS+ Th e = LB Te[yry ey A] + Tr[y By vy},
THO 4 ThYt = ~ B T [y M Ay yY ] + Te[y vy Bal} .
TS+ Th = ~ BB Te[yky e Ay’ ] + Tr[yhy” Buy?1}
Th e+ The = — 9B {Tr[yry ¢y A + Trly By y71}

approximation
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quB t
T+ Ta = I Ty Ay Yy y T 1 Fpe

+ Tr[7 YOV Yy B Foslh

quB t>
TRE TR = - 2Ty y Ay y T 1P

+ Tr[v"nyyﬂ?by Y1 Fop}.

Bt R
Tas * Targ = qu ATy Ty A e

A19 B19
+ Tr[7”$c7V7‘I Y3 1Fop). (33)

40/41



nstituto de
Ciencias | *°

\ucleares

UNAM

Symmetry properties
Rutus Base

Expansion of the
vertex in the Ritus
base

Schwinger phase
General expression
Aproximation

Choose of integration
path

Stationary phase
approximation

where
S3Wp, + SHWgq (t3wp1 + 1'2(1.)q)527L — t2t3a)p2’y(TFo-'3Cf[E
PR L
Swq twgqg
" Fopd’
slwq + 53a)p2 (t3wp2 + tlwq)gh + tit3wp, YY" Fopq)
ﬂb = I € —
twg
Sla)p1 Sgu)p2 (—tla)pl + 1'2(1),,2)g7l + t1t3u)q)/0— o‘ﬁqf
:7ic = 91” e+
twg
(t twg)d, + tot TFopq’
% (53(1),31 + Szu)q) 3Wp, T bawg 9%_ + bt3wp,Y” Fopq,
a - €1 —
I twg
S1Wgq + S3Wp, (tzwp, + tiwg) g, — t1t3wply“F(,qu
$b = —-|—- I € +
Swq twg
S1Wp, — S2Wp, (tiwp, — bwp,) g, + titzwgy? rrﬁqf
$C = -\ ¢” €3 + ‘
Swq twg
t = thibtz—t1—tHh—13
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