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Intro I

Zeta functions are often associated with sequences of real numbers
λ1, λ2, λ3, . . ., which, for many applications, are eigenvalues of
Laplace-type operators. As a generalization of the Riemann zeta
function,

ζR(s) =
∞∑
k=1

k−s,

we define

ζ(s) =
∞∑
k=1

λ−s
k ,

where s is a complex parameter whose real part is assumed to be
sufficiently large to make the series convergent.
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Intro II

To indicate how the zeta function relates to other spectral functions,
we discuss the example of a functional determinant. Consider a
sequence of finitely many numbers λ1, λ2, . . . , λn. If we consider
them as eigenvalues of the matrix P , we have

detP =
n∏

k=1

λk,

which implies ln detP =
∑n

k=1 lnλk = − d
ds

∑n
k=1 λ

−s
k

∣∣
s=0

.
It is

ln detP = −ζ ′(0),→ detP = e−ζ′(0).
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Intro III

Given that F (λ) = 0 defines the eigenvalues λn, then the logarithmic
derivative

d

dλ
lnF (λ) =

F ′(λ)

F (λ)

has poles at the same eigenvalues. If we expand the logarithmic
derivative about λ = λn, we obtain for F ′ (λn) ̸= 0 that

F ′(λ)

F (λ)
=

F ′ (λ− λn + λn)

F (λ− λn + λn)

=
F ′ (λn) + (λ− λn)F

′′ (λn) + · · ·
(λ− λn)F ′ (λn) + (λ− λn)

2 F ′′ (λn) + · · ·

=
1

λ− λn

+ · · ·
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Intro IV

Cauchy’s residue theorem show, given the appropriate behavior of
F (λ) at infinity, that for Re s > 1

2
,

ζP (s) =
1

2πi

∫
γ

dλλ−s d

dλ
lnF (λ),

where the contour γ is shown in the figure
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Example I

As an example, we consider the eigenvalue problem

− d2

dτ 2
ϕn(τ) = λnϕn(τ), ϕn(0) = ϕn(L) = 0.

The eigenfunctions have the form

ϕn(τ) = a sin
(√

λnτ
)
+ b cos

(√
λnτ
)
.

H.Falomir,M.Loewe,E.Muñoz, J.C.Rojas and R.ZamoraDinamical Casimir Effect July 18, 2024 7 / 38



Example II

The appearance of the cosine is excluded by the boundary value
ϕn(0) = 0. The eigenvalues are found from the equation

sin
(√

λnL
)
= 0.

This condition can be solved for analytically, and we find

ϕn(τ) = A sin
(√

λnτ
)
, λn =

(nπ
L

)2
,
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Example III

For this example the natural choice for the function F is
F (λ) = sin(

√
λL). This choice has to be modified because λ = 0

satisfies F (0) = 0. To avoid F (λ) having more zeros than there are
actual eigenvalues we define

F (λ) =
sin(

√
λL)√
λ

=
1

2i
√
λ

(
ei

√
λL − e−i

√
λL
)

.

Note that F (λ) is an entire function of λ.
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Example IV

The next step in the contour integral formalism is to rewrite the zeta
function using Cauchy’s integral formula. Given that F (λ) = 0
defines the eigenvalues λn, then the logarithmic derivative

d

dλ
lnF (λ) =

F ′(λ)

F (λ)
.

We next want to shrink the contour to the negative real axis. As λ
approaches the negative real axis from above, λ−s picks up the phase
(eiπ)

−s
= e−iπs; the limit from below produces (e−iπ)

−s
= eiπs.

H.Falomir,M.Loewe,E.Muñoz, J.C.Rojas and R.ZamoraDinamical Casimir Effect July 18, 2024 10 / 38



Example V

Along the contour,the zeta function is given by

ζP (s) =
sin πs

π

∫ ∞

0

dxx−s d

dx
ln

(
e
√
xL

2
√
x

[
1− e−2

√
xL
])

.
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Example VI

In order to compute the integral, we need

ζ ′P (0) =

(
d

ds

∣∣∣∣
s=0

sin πs

π

)(∫ ∞

0

dxx−s

× d

dx
ln

(
e
√
xL

2
√
x

[
1− e−2

√
xL
]))

|s=0 +

(
sin πs

π

)∣∣∣∣
s=0

×
(

d

ds

∣∣∣∣∞
s=0

∫ ∞

0

dxx−s d

dx
ln

(
e
√
xL

2
√
x

[
1− e−2

√
xL
]))

=

∫ ∞

0

dx
d

dx
ln

(
e
√
xL

2
√
x

[
1− e−2

√
xL
])

.
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Example VII

To analyze the equation, further we split the integral as∫ 1

0
dx+

∫∞
1

dx. From our previous remarks it follows that
∫ 1

0
dx can

be considered to be in final form, but
∫∞
1

dx needs further
manipulation. The pieces needing extra attention are∫ ∞

1

dxx−s d

dx
ln e

√
xL =

L

2

∫ ∞

1

dxx−s−1/2 =
L

2s− 1
,∫ ∞

1

dxx−s d

dx
ln

(
1

2
√
x

)
= −1

2

∫ ∞

1

dxx−s−1 = − 1

2s
.
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Example VIII
We end with

ζP (s) =
L sin πs

(2s− 1)π
− sin πs

2sπ

+
sin πs

π

∫ ∞

1

dxx−s d

dx
ln
(
1− e−2

√
xL
)

+
sin πs

π

∫ 1

0

dxx−s d

dx
ln

(
e
√
xL

2
√
x

[
1− e−2

√
xL
])

,

a form perfectly suited for the evaluation of ζ ′P (0). We find

ζ ′P (0) = −L− 0− ln
(
1− e−2L

)
+ ln

(
eL

2

[
1− e−2L

])
− lnL

= − ln(2L).
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Example IX

It agrees with the answer found from the well known values
ζR(0) = −1

2
, ζ ′R(0) = −1

2
ln(2π) :

ζP (s) =
∞∑
n=1

(nπ
L

)−2s

=

(
L

π

)2s

ζR(2s),

which implies that

ζ ′P (0) = 2 ln

(
L

π

)
ζR(0) + 2ζ ′R(0)

= − ln

(
L

π

)
− ln(2π)

= − ln(2L).
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The model I

H := L2((0, l))⊕ C,

φ(z) =

(
φ1(z)

φ2

)

D(A) :=
{
φ(z) ∈ H : φ1(z), φ

′
1(z) ∈ AC[0, l], φ′′

1(z) ∈ L2((0, l)),

cosαφ1(0) + θ sinαφ′
1(0) = 0, φ2 = β′

1φ1(l)− β′
2φ

′
1(l)}

Aφ(z) :=

(
[−∂z

2 +m2 + V (z)]φ1(z)

− [β1φ1(l)− β2φ′
1(l)]

)
.
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The model II

where V (z) is a bounded function, and the dynamical equation of the
coupled system reads as (

∂t
2 + A

)
φ(z) = 0,

which implies that the field satisfy the differential equation[
∂t

2 − ∂z
2 +m2 + V (z)

]
φ(z) = 0,

with dynamical boundary conditions

cosαφ1(t, 0) + θ sinα∂zφ1(t, 0) = 0,

∂t
2 [β′

1φ1(t, l)− β′
2∂zφ1(t, l)] = [β1φ1(t, l)− β2∂zφ1(t, l)] .
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The model III

For the stationary states φ(t, z) = e−iωtφ(z), φ ∈ D(A), we get

Aφ(z) = ω2φ(z)

cosαφ1(0) + θ sinα∂zφ1(0) = 0,(
β2 + ω2β′

2

)
φ′
1(l) =

(
β1 + ω2β′

1

)
φ1(l),

A so defined is self-adjoint if ρ = β′
1β2 − β1β

′
2 > 0, and that A is

positive if m2 + V (z) > 0 for z ∈ [0, l], α = 0 or α ∈
[
π
2
, π
)
, and

β1 ≥ 0, β′
1, β2 < 0, for β′

2 > 0,

β1 ≤ 0, β′
1, β2 > 0, for β′

2 < 0,
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The model IV

For simplicity, in the following we take α = 0 so as to require that
φ1(0) = 0. Also we take V (z) ≡ 0.
The general solution of(

−∂z
2 +m2

)
φ1(z) = ω2φ1(z), with φ1(0) = 0,

given by
φ1(z) ∼ sin

(
z
√
ω2 −m2

)
.
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The model V

where ω2 > 0 since we are considering a positive definite operator.
Then, the boundary condition at z = l

(β2 + ω2β′
2)
√
ω2 −m2 cos

(
l
√
ω2 −m2

)
= (β1 + ω2β′

1) sin
(
l
√
ω2 −m2

)
.

For ω2 < m2, the boundary condition at z = l gives

(β2 + ω2β′
2) i

√
m2 − ω2 cosh

(
l
√
m2 − ω2

)
= (β1 + ω2β′

1) i sinh
(
l
√
m2 − ω2

)
,

or
tanh

(
l
√
m2 − ω2

)
l
√
m2 − ω2

=
(β2 + ω2β′

2)

l (β1 + ω2β′
1)
,
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The model VI
Which has no solutions since the left hand side is positive for
0 < ω2 < m2, while the right hand side is a decreasing function of ω2

that takes the value β2

lβ1
< 0 for ω2 = 0. Indeed,

∂

∂ω2

(
(β2 + ω2β′

2)

l (β1 + ω2β′
1)

)
=

−ρ

l (β1 + ω2β′
1)

2 < 0.

For ω2 ≥ m2, defining x := l
√
ω2 −m2, the spectrum is given by the

zeroes of

f(x) := x
(
a+ bx2

)
cosx−

(
c+ dx2

)
sinx

where we have defined the dimensionless parameters

a = l
(
β2 +m2β′

2

)
, b = β′

2/l, c = l2
(
β1 +m2β′

1

)
and d = β′

1,

with lρ = (ad− bc) > 0.
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Zeta function I

The analytic extension of the associated ζ-function,

ζA(s) :=
∞∑
n=1

(
ωn

µ

)−2s

,

where µ is an arbitrarily chosen mass scale. In terms of
xn = l

√
ω2
n −m2,

ζA(s) = (µl)2s
∞∑
n=1

(
l2ω2

n

)−s
= (µl)2s

∞∑
n=1

(
xn

2 +M2
)−s

.−
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Zeta function II
The knowledge of ζA(s) allows for the evaluation of several relevant
magnitudes. The determinant of the operator A is defined in this
context by

log Det(A) := −ζA
′(0) = log

(
µl

π

)
+

+
l2m2

6
− d

3b
− π2

24
− γ + log(2π)−△ζ ′(0).

The vacuum energy of the quantum system, "
∑

n
ℏωn

2
", is a

formally divergent quantity which requires a precise definition through
regularization. In the present context, the Casimir energy is defined
in terms of the analytic continuation

E
(0)
Cas (l) :=

ℏµ
2

∑
n

(
ωn

µ

)−2s
∣∣∣∣∣
s→− 1

2

=
ℏµ
2
ζA(s)

∣∣∣∣
s→− 1

2
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Zeta function III

Notice that f(z) in is an odd function which has no nonreal zeroes,
since A is a positive self-adjoint operator. Moreover, the eigenvalues
ωn

2 > m2 > 0 (i.e. xn > 0 ).
Then, employing the Cauchy’s residue theorem we can write, for real
s and an integration path encircling clockwise all the xn, n ∈ N,

(µl)−2sζA(s) = − 1

2πi

∮ i∞

−i∞
dz
(
z2 +M2

)−s d

dz
log f(z) =

= −M−2s

2πi

∮ i∞

−i∞
dz
(
z2 + 1

)−s d

dz
log f(Mz).
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Zeta function IV

So,(
m

µ

)2s

ζA(s) =
1

π
ℑ
{
eiπs

∫ ∞

1

dy
(
y2 − 1

)−s d

dy
log f(iMy)+

+ lim
ε→0+

∫ 1

ε

dy
(
1− y2

)−s d

dy
log f(iMy)

}
+

− 1

2πi
lim
ε→0+

∫ i

−i

εdz
(
ε2z2 + 1

)−s
[
1

εz
+O(ε)

]
,
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Zeta function V

- Where the last integral is evaluated on the half-circle
|z| = 1,ℜz ≥ 0 and we can write

log(2if(iMy)) = My + log(P (y)) + log

(
1− e−2MyP (−y)

P (y)

)
,

with

P (y) := c− aMy − dM2y2 + bM3y3 =

= l2
{(

β1 +m2β′
1

)
−
(
β2 +m2β′

2

)
my − β′

1m
2y2 + β′

2m
3y3
}
.
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Zeta function VI
We remark that P (y) is independent of l and the rational function

Q(y) :=
P (−y)

P (y)
≍

{
−1− 2β′

1

β′
2my

+O (y−2) , if β′
2 ̸= 0,

1− 2β2

β′
1my

+O (y−2) , if β′
2 = 0, β′

1 ̸= 0.

So, we have
d

dy
log f(iMy) = M+

P ′(y)

P (y)
+
P (y)P ′(−y) + [P ′(y) + 2MP (y)]P (−y)

P (y) [e2MyP (y)− P (−y)]
∈ R,

where the last term is O
(
e−2My

)
and we have the asymptotic

behaviors
= M + 3

y
+

β′
1

mβ′
2y

2 +O (y−3) +O
(
e−2My

)
, for y ≫ 1, β′

2 ̸= 0,

= M + 2
y
− β2

mβ′
1y

2 +O (y−3) +O
(
e−2My

)
, for y ≫ 1, β′

2 = 0,

= 1
y
+ 3a−6b−c+6d

3(a−c)
M2y +O (y2) , for y ≪ 1.
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Zeta function VII

Therefore, for 1
2
< s < 1, we can write(
m

µ

)2s

ζA(s) = I1(s) + I2(s) + F (s),

where

I1(s) :=
M

π
sin(πs)

∫ ∞

1

dy
(
y2 − 1

)−s
=

M

2π3/2
sin(πs)Γ(1− s)Γ(s− 1/2),

I2(s) :=
1

π
ℑ
{
eiπs

∫ ∞

1

dy
(
y2 − 1

)−s d

dy
logP (y)

}
=

=
1

π
ℑ

{
eiπs

∫ ∞

1

dy
(
y2 − 1

)−s
3∑

k=1

1

y − zk

}

with zk, k = 1, 2, 3 the zeroes of the cubic polynomial P (y).
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Zeta function VIII

and

F (s) := −1

2
+
sin(πs)

π

∫ ∞

1

dy
(
y2 − 1

)−s d

dy
log

(
1− e−2MyP (−y)

P (y)

)
,

The zeroes of P (y) obey

z1 + z2 + z3 =
d

bM
=

β′
1

mβ′
2

,

z1z2 + z1z3 + z2z3 =
−a

bM2
= −β2 +m2β′

2

m2β′
2

,

z1z2z3 =
−c

bM3
= −β1 +m2β′

1

m3β′
2

.
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Zeta function IX
Now notice that, for s < 1 and due to the factor Γ(s− 1/2) in the
expression of I1(s), the analytic extension of its contribution to ζA(s)
presents simple poles at s = 1

2
− n, for n = 0, 1, 2, · · · , with residue

Res

[(
m

µ

)−2s

I1(s)

]
s= 1

2
−n

=
lµ

2π3/2n!

(
m

µ

)2n

Γ

(
n+

1

2

)
.

On the other hand, since the integrand in I2(s) is free of singularities
for y ∈ [1,∞), we can assume that ℜzk < 1 or ℑzk ̸= 0. Taking into
account that, for u > 0,−π < α < π and 1

2
< s < 1, we have∫ ∞

1

dy
(y2 − 1)

−s

y + eiαu
=

π

sin(2πs)

[(
eiαu

)2 − 1
]−s

+

1

2
√
πeiαu

Γ(1− s)Γ

(
s− 1

2

)
2F1

(
1

2
, 1;

3

2
− s;

1

(eiαu)2

)
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Zeta function X

Hypergeometric function 2F1(1/2, 1; 3/2− s;x) is analytic in s. The
meromorphic extension of the contribution of I2(s) to ζA(s) on the
open half-plane ℜs < 1

2
presents simple poles at s = 1

2
− n, with

n = 0, 1, 2, · · · , with residues

Res

[(
m

µ

)−2s

I2(s)

]
s= 1

2
−n

= − 1

π

(
m

µ

)2n−1

×

3∑
k=1

{
(−1)n

2

(
zk

2 − 1
)n− 1

2 +
Γ
(
n+ 1

2

)
2
√
πn!zk

2F1

(
1

2
, 1;n+ 1;

1

zk2

)}
.
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Zeta function XI

However, since the integrand in the definition of I2(s)

(y2 − 1)
−s d

dy
logP (y) = (y2 − 1)

−s ×

{
3
y
+

β′
1

β′
2my2

+O (y−3) , β′
2 ̸= 0,

2
y
− β2

β′
1my2

+O (y−3) , β′
2 = 0,

Res

[(
m

µ

)−2s

I2(s)

]
s=− 1

2

=

{
− β′

1

2πµβ′
2
, β′

2 ̸= 0,
β2

2πµβ′
1
, β′

2 = 0,
(1)
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Determinant I
ζA(s) is analytic in a neighborhood of the origin, we get for s ≈ 0

ζA(s) = −Ms+

[
3

2
−

(
3 log

(
m

µ

)
+

3∑
k=1

log (zk − 1)

)
s

]
+

+

[
1− 2s log

(
m

µ

)]{
−1

2
+ sF ′(0)

}
+O

(
s2
)

and, from the usual definition of the functional determinant,

log Det
(
A/µ2

)
:= −ζA

′(0) =

ml + 2 log

(
m

µ

)
+

3∑
k=1

log (zk − 1)− F ′(0),

where ∑3
k=1 log (zk − 1) = log

{
−P (1)
β′
2l

2m3

}
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Determinant II

and

F ′(0) = − log

[
1− e−2mlP (−1)

P (1)

]
.

Notice that ζA(0) = 1 and Det (A/µ2) do depend on the external
scale µ.
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Casimir energy I

ζA(s) has a simple pole at s = −1/2.

ζA(s) =

{
lm2

4πµ
− β′

1

2πµβ′
2

}
1(

s+ 1
2

) +O
(
(s+ 1/2)0

)
.

Around s = −1/2 we have(
m
µ

)−2s

I1(s) =
Mm
4πµ

{
1

(s+ 1
2)

−
[
2 log

(
m
2µ

)
+ 1
]
+O

(
s+ 1

2

)}

H.Falomir,M.Loewe,E.Muñoz, J.C.Rojas and R.ZamoraDinamical Casimir Effect July 18, 2024 35 / 38



Casimir energy II

And(
m

µ

)−2s

I2(s) =
3m

2µ
− dm

2πbµM

{
1

s+ 1
2

− 2

[
log

(
m

2µ

)
+ 1

]}
+

− m

πµ

∫ ∞

1

dy
√

y2 − 1

{
P ′(y)

P (y)
− 3

y
− d

bMy2

}
+O

(
s+

1

2

)
where the integral in the last line can also be written interms of the
zeroes of P (y) as

− m

πµ
lim
Λ→∞

∫ Λ

1

dy
√

y2 − 1

{
3∑

k=1

1

y − zk
− 3

y
− d

bMy2

}
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Casimir energy III

Taking into account that the zeroes of P (y) are l-independent, after
appropriate subtractions of the divergent linear in l and constant
terms, thus renormalizing the linear energy density and the zero
energy level, (and assuming that P (y) has no zeroes in [1,∞) ) we
can define de Casimir energy as

ECas (l) := E0 + E1l +
ℏm
2

F (−1/2) =

= E0 + E1l −
ℏm
2π

∫ ∞

1

dy
√

y2 − 1
d

dy
log

(
1− e−2MyP (−y)

P (y)

)
=

= E0 + E1l +∆E(l),

∆E(l) :=
ℏm
2π

∫ ∞

1

dy
y√

y2 − 1
log
(
1− e−2MyQ(y)

)
.
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Casimir energy IV

Figure: Figure. ∆E as a function of M for m = 1, β1 = −1, β2 =
−22, β′

1 = 0, β′
2 = 1
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