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N
Intro |

Zeta functions are often associated with sequences of real numbers
A1, A2, As, . .., which, for many applications, are eigenvalues of
Laplace-type operators. As a generalization of the Riemann zeta

function,
Cr(s) =) k7,
e
we define 3
&> %N
L1

where s is a complex parameter whose real part is assumed to be
sufficiently large to make the series convergent.
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N
Intro |l

To indicate how the zeta function relates to other spectral functions,
we discuss the example of a functional determinant. Consider a
sequence of finitely many numbers Ay, Ag, ..., \,. If we consider
them as eigenvalues of the matrix P, we have

detP:ﬁ)\k,
k=1

which impliesin det P = Y5 In A\, == £ 570 A8
It is

In det P = —¢'(0), = det P = e 4O,
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N
Intro |11

Given that F'(A) = 0 defines the eigenvalues ), then the logarithmic

derivative / PO

has poles at the same eigenvalues. If we expand the logarithmic
derivative about A\ = )\,,, we obtain for F’ (\,) # 0 that

200 RadoNEB R

FQ) — F(A = +A)
B FFO)+ M=) FE" () + -
B ()\—/\n)F/<)\n)—|—<)\_)\n)2F1/<)\n)+
1
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Intro IV

Cauchy's residue theorem show, given the appropriate behavior of
F()) at infinity, that for Res > 1,

1 . d
Cr(s) = 5~ / AN I F (M),

where the contour ~y is shown in the figure

A-plane

—

‘
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Example |

As an example, we consider the eigenvalue problem

d2

dr?

Pn(T) = Andn(7), @n(0) = ¢n(L) = 0.

The eigenfunctions have the form

(7)) —asin (\/)\_m') + bcos (\/ET> 3
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Example |l

The appearance of the cosine is excluded by the boundary value
®,(0) = 0. The eigenvalues are found from the equation

sin <\/)\_nL> =0.

This condition can be solved for analytically, and we find

&n(7) = Asin <\/)\_n7> , <n_7r>27

L
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Example 1|

For this example the natural choice for the function F'is

F()\) = sin(v/AL). This choice has to be modified because A = 0
satisfies '(0) = 0. To avoid F'(\) having more zeros than there are
actual eigenvalues we define

T T

Note that F'(\) is an entire function of A.

F()) = sin(VAL) 1 (ez‘ﬁL e 6—z‘ﬁL) _
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Example IV

The next step in the contour integral formalism is to rewrite the zeta
function using Cauchy's integral formula. Given that F'(A) =0
defines the eigenvalues )\, then the logarithmic derivative

d P\
T FQ) = 0

We next want to shrink the contour to the negative real axis. As \
approaches the negative real axis from above, A=* picks up the phase
(e™)"" = e~ the limit from below produces (e=) " = ei™.

July 18, 2024 10/38
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Example V

A-plane

Along the contour,the zeta function is given by

sinws [ d e b
s =S TR _ —2y/zL
Cp(s) /o e - In <2\/5 [1 e ]) :

0
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Example VI

In order to compute the integral, we need
d sin s i
!/ O L e d =&
50N e
VaL :
d e [ e‘z\/ﬂ] | fols sin s
$ 2\/_ 3 s=0
00 00 vzL
% <£ / T i In (e [1 — 6_2\/5Li|))
dsd I 15 dx A0

0 VL
:/ d:z;iln <e [1 — eQﬁL]> k
o dx 2
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Example VII

To analyze the equation, further we split the integral as

fol dz + [ dx. From our previous remarks it follows that fol dx can
be considered to be in final form, but floo dx needs further
manipulation. The pieces needing extra attention are

R d B IS 10
/ it °— Inevsl = —/ drx=s" Y2 = T

/ da:x_siln (L> = —1/ dex=*" ' = —i.
" dx 2\/x 2% 25
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Example VIII

We end with

¢ ( ) Lsinrs sin s
5) = —
e (2s—1)m  2sm

ST SNy 2 G R ®
+ /1d$m 7 1n<1 e )

T 7
: 1 xL

o 31n7rs/ dx:v_siln S [1 - 6_2\/5L} ;
s i, dx 2\/x

a form perfectly suited for the evaluation of (;-(0). We find

Ca(0) =l — (0 —n (1 o e’2L) +1n <§ [1 . €2L}> gt

= —In(2L).
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Example IX

It agrees with the answer found from the well known values
Cr(0) = —3,¢x(0) = —3 In(2) :
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N
The model |

D(4) := {p(2) € H : pr(2), p1(2) € AC[0,1], ¥ (2) € L*((0,1)),
cos a1 (0) + sin ap](0) =0, ps = Bre1(l) — Bopi (D}

[-0.2+m2+V(2)] ¢ (z)>

Aﬂ@?( — [Bup1 (1) — Baii (1)
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N
The model I

where V(2) is a bounded function, and the dynamical equation of the
coupled system reads as

(82 + A) p(2) =0,
which implies that the field satisfy the differential equation
[0 — 8,> + m® + V(2)] o(2) =0,
with dynamical boundary conditions

cos aupy (t, 0) + 0sin ad,p1(t,0) = 0,
8t2 [51901(@ l) E 5§az%01 (ta l)] =5 [Bl(zpl(ta l) By 5282901 (ta l)] i
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N
The model [l

For the stationary states ¢(t,2) = e ™'p(2), p € D(A), we get

Ap(z) = wo(2)
cos a1 (0) + 6 sin ad,p1(0) = 0,
(B2 + w?B3) P1(1) = (B + w?B1) ea (D),

A so defined is self-adjoint if p = 5162 — 8185 > 0, and that A is
positive if m? + V() > 0 for z € [0,1],a =0 or @ € [Z,7), and

Bl Z 07 61752 < 07 fOI’ 5; > 07
51 S 07 51’/82 > 07 'FOF ﬂé < Oa
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N
The model IV

For simplicity, in the following we take e = 0 so as to require that
©1(0) = 0. Also we take V(z) = 0.
The general solution of

(0.2 +m?) p1(2) = W1 (2), with  ©1(0) =0,

given by

©1(2) ~ sin <Z\/m> .
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N
The model V

where w? > 0 since we are considering a positive definite operator.
Then, the boundary condition at z = [

(B2 + w?By) Vw? — m? cos (IVw? — m?) = (B + w?B) sin (IVw? — m?) .

For w? < m?, the boundary condition at z = [ gives

(B2 + w?By) iv/m? — w2 cosh (l\/m2 - wQ) = (B + w?B4) isinh (l\/m2 — wQ) .

or

tanh (IvVm? —w?) (B, +w?B))

I/m?2 — w? » 1(B1 + w?By)’
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N
The model VI

Which has no solutions since the left hand side is positive for
0 < w? < m?, while the right hand side is a decreasing function of w?
that takes the value 22 < 0 for w? = 0. Indeed,

et
d <(52+W25§)>:_—p<0
Ow? \ [(B1 +w?Bi) (B +w2B)?

For w? > m?, defining = := [v/w? — m2, the spectrum is given by the
zeroes of

f(@) ==z (a+bz®) cosz — (c+ dz?)sinz
where we have defined the dimensionless parameters
a=1(8zF m2Bs),b=Fa/l,c=12 (Bt m?B,) and d = B,
with lp = (ad — bc) > 0.
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N
Zeta function |

The analytic extension of the associated (-function,

(o (“—)

=il ¥

where 11 is an arbitrarily chosen mass scale. In terms of
Ty = I/ 2,

(o.o]

C 252 12 2 25§: a,;n +M2 et
n=1

=1
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N
Zeta function |l

The knowledge of (4(s) allows for the evaluation of several relevant
magnitudes. The determinant of the operator A is defined in this
context by

log Det(A) := —(4'(0) = log <%l) +

?m? d 2

————— log(2m) — AC'(0).
T = o= +log(2m) = AC(D)
The vacuum energy of the quantum system, " > h“’T" " is a

formally divergent quantity which requires a precise definition through
regularization. In the present context, the Casimir energy is defined
in terms of the analytic continuation

1 =L

EO (1) _ hu Z R
Cas ( )
5 2
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Zeta function Il

Notice that f(z) in is an odd function which has no nonreal zeroes,
since A is a positive self-adjoint operator. Moreover, the eigenvalues
wit i Rl e x> 0.

Then, employing the Cauchy'’s residue theorem we can write, for real
s and an integration path encircling clockwise all the x,,,n € N,

i 1 E “y dl
(1) ™*Ca(s) = ¥ MR (22 + M%) 3, o flz) =
M—2s 100 J .
o dz (z° +1) - log f(Mz).
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N
Zeta function |V

2s
m 1 - 5 A :
— ] Cals :—S{e”s/ dy (v* — 1) —log feMy)+
<N> 4 m 1 ( ) dy ( )
e A .
+s£%£r ; dy (1 —y?) d—ylogf(zMy)}—l—
1 g : A - | 1
—— lim edz (€22 +1) 5—2—1—0(8) ,

27TZ e—0t —
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N
Zeta function V

- Where the last integral is evaluated on the half-circle
|z| = 1, Rz > 0 and we can write

log(2if (iMy)) = My + log(P(y)) + log (1 _ 2y 2y <—y>) |

with
P(y) := c — aMy — dM?y® + bM3y® =
=P {(B1+m?B)) — (B2 + m?By) my — Bym*y* + BymPy’} .
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N
Zeta function VI

We remark that P(y) is independent of [ and the rational function
HR Ol [l %i +0@™),  fBAD,
Py) 1- 22 1 0@™), i B=0840

So, we have

Qy) =

d ; Pl BB B R ) P
TR R ErT e = e

where the last term is O (e7?¥) and we have the asymptotic
behaviors

=M+3+ 0510 ) +0 (™), for y>1,8#0,
M+——m/3/2+0( N+ 0(e), for y>1,0=0,
S + O (g s <l
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N
Zeta function VII

Therefore, for % < s < 1, we can write
m 2s
(g) Ca(s) = Ii(s) + Ix(s) + F(s),

where

(&) &= gsin(ﬂs) /OO e ) = % sin(7s)['(1 — s)I'(s — 1/2),

1

2 Ll &)
n() = zo{er [Tay (2 <) S0P | =
1
1 % 2
_ TS d _1 )
ale Cati-n D]

=

with zx, k = 1,2, 3 the zeroes of the cubic polynomial P(y).
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N
Zeta function VIII

The zeroes of P(y) obey

d By
ZI+Z2+Z3_W_m_/Bé’
21
2122 + 2123 + 2223 = L —52 i 527
E m2p,
21

R c | e o8

e m3 B,
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N
Zeta function IX

Now notice that, for s < 1 and due to the factor I'(s — 1/2) in the
expression of I1(s), the analytic extension of its contribution to (4(s)

presents simple poles at s = % —n, forn=0,1,2,---, with residue

m 725]() i lﬂf m QnF +1
;L o S:l_n_27r3/2n! ] " Bk

On the other hand, since the integrand in I5(s) is free of singularities
for y € [1,00), we can assume that Rz, < 1 or Sz;, # 0. Taking into
account that, for u > 0, —7 < o < 7 and % < s < 1, we have

/100 dy<y2 = D_s 8 ] [(eiO‘U)z - 1] i

y+ ey sin(2ms
|

1 1 3 1
BT (B r | S —
2\/%6“”& ( S) (S 2)2 1(2’ 72 % <€iau)2)
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N
Zeta function X

Hypergeometric function o F7(1/2,1;3/2 — s; x) is analytic in s. The
meromorphic extension of the contribution of I5(s) to C4(s) on the
open half-plane Rs < % presents simple poles at s = % — n, with

n=20,1,2,---, with residues

) <, 6
g { (_21)” (2 1;\(/”_;2 A (1, Iin+ 1 %) }
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N
Zeta function X|

However, since the integrand in the definition of I5(s)

3 B = /
—g —g 7+ 7 +O B O7
(o~ B, By — g2 — 1y L e S 0
¢ S O O — 0,

il & B !
) IQ(S)] :{_252“55’ - o

/ g
2mpBy? 62 By O,

N|=
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N
Determinant |

Ca(s) is analytic in a neighborhood of the origin, we get for s ~ 0

(310g< )+Zlog zk—1>
R {1 — 2slog (%)} {—% +5F'(0)} +0 (s?)

and, from the usual definition of the functional determinant,
log Det (A/p?) := —C4'(0) =

CA(S) =—Ms ¢

ml+210g( )+Zlog 2z — 1) — F'(0),

where

32 1og (a4 = 1) = log { 604}
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Determinant I

and

F'(0) = —log [1 — e P]g(_lﬂ :

Notice that (4(0) = 1 and Det (A/u?) do depend on the external
scale .
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|
Casimir energy |

Ca(s) has a simple pole at s = —1/2.

g Sl } 1
dmp 2mpBy J (s +3)

Ca(s) ={ +0 ((s+1/2)°).

Around s = —1/2 we have

(2) " 1) =t { iy — 2o () +1] + 0o+ )}
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Casimir energy |l
And

i _231(3)—3—m— g L o o |
1 . Y. bR 2 2u

_ﬂ dy y2_1{m_§_ d }—I—O(S—i—l)
TH

1 TPl | TR Sulig 2

where the integral in the last line can also be written interms of the
zeroes of P(y) as

T A—oo

€~y 1tz Y ullle

A 3
LTS dy\/yQ—l{Z 1 0 }
1
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Casimir energy Il

Taking into account that the zeroes of P(y) are l-independent, after
appropriate subtractions of the divergent linear in [ and constant
terms, thus renormalizing the linear energy density and the zero

energy level, (and assuming that P(y) has no zeroes in [1,00) ) we
can define de Casimir energy as

Feas (l) =& + &l + —F (=1/2)%=
hm

= 50 + gll Gl dy\/ y e e IOg (1 —2My yzi)) =
21 Jy
_80+€1Z+AE (1),

AE(l) :zz—:/lood Wlog(l g~ e
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Casimir energy IV
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Figure: Figure. AF as a function of M form =1,6; = —1,8; =
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