Nambu-Jona—Lasinio model in the presence of intense magnetic fields

Ricardo L.S. Farias Physics Department Federal University of Santa Maria - Brazil

First Latin American Workshop on Electromagnetics Effects in QCD

Puerto Vallarta July, 2024

Outline for the lectures

- (i) NJL model at finite T and B basics
- (ii) Issues related to regularizing thermo and magnetic contributions within nonrenormalizable theories and **applications**
- (iii) hot quark matter and hot bosonic matter with a strong electric field

Outline

- Motivation
- Schrödinger Equation and Dirac Equation
- Particle in the Presence of an Electromagnetic Field
- NJL model in MFA
- NJL model at finite eB
- Magnetic Catalysis
- Thermodynamical Quantities
- Magnetic Field Independent Regularization MFIR

In Collaboration with:

- Sidney Avancini UFSC Brazil
- Marcus E. B. Pinto UFSC Brazil
- Gastão I. Krein IFT Unesp Brazil
- Dyana C. Duarte UFSM Brazil
- William R. Tavares UERJ Brazil
- Norberto Scoccola CNEA Argentina
- Tulio Restrepo UFRJ Brazil
- Varese. T. Salvador UNICAMP Brazil
- Rudnei O. Ramos UERJ Brazil
- Veronica Dexheimer KSU EUA
- Aritra Bandyopadhyay Heidelberg Germany

SIMEE 10 **Strongly Interacting Matter under Extreme Environments**

Prof. Ricardo L S Farias

Phd. Students

Msc. Student

Arthur E. B. Pasqualotto

Rafael B. Jacobsen

Rodrigo M. Nunes

Francisco X. Azeredo

Francisco A. Macuba

Quarks and gluons in extreme conditions

- heavy ion collisions $T \lesssim 10^{12} \, {}^\circ C = 200$ MeV, $n \lesssim 0.12$ fm⁻³ $B \lesssim 10^{19}$ G = 0.3 GeV²/e
- neutron stars $T \lesssim 1$ keV, $n \lesssim 2$ fm⁻³ magnetars $B \lesssim 10^{15}$ G
- ▶ neutron star mergers $T \lesssim 50$ MeV
- eary universe, QCD epoch T ≤ 200 MeV standard scenario: $n \approx 0$ also allowed: $n_Q = 0$, $n_\ell/s \leq 0.01$

Strengths of magnetic fields

• Strong magnetic fields are also present in magnetars: C. Kouveliotou et al., Nature 393, 235 (1998). magnetars: at surface $B \lesssim 10^{15} \,\mathrm{G}$ Duncan, Thompson, Astrophys.J. 392, L9 (1992) larger in the interior, $B \sim 10^{18-20} \,\mathrm{G?}$ Lai, Shapiro, Astrophys.J. 383, 745 (1991) E. J. Ferrer et al., PRC 82, 065802 (2010)

A. K. Harding, D. Lai, Rept. Prog. Phys. 69, 2631 (2006)

• and might have played an important role in the physics of the early universe. T. Vaschapati, Phys. Lett. B 265, 258 (1991).

D. Grasso and H.R. Rubinstein, Phys. Rep. 348, 163 (2001).

B Effects on QCD phase transitions?

 $\Lambda_{\rm QCD}^2 \sim (200 \,{\rm MeV})^2 \sim 2 \times 10^{18} \,{\rm G}$

IMC: Bali, Bruckmann, Endrodi, Fodor, Katz et al. JHEP 02 (2012) 044 Phys.Rev.D 86 (2012) 071502

Phase diagram

▶ control parameters: T, $n \leftrightarrow \mu$, B

$$\mu_{\{u,d,s\}} \ / \ \mu_{\{B,Q,S\}} \ / \ \mu_{\{B,I,S\}}$$

well-known famous phase diagram

▶ well-known, less famous phase diagram: T - B

* G. Endrodi slide - SQM 2024

B Effects on QCD phase transitions?

M. D'Elia , L. Maio, F. Sanfilippo, A. Stanzione, Phys. Rev. D 105 , 034511 (2022).

Strength of the magnetic fields

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

	B [Gauss]	eB [MeV ²]
Earth surface	0.5	(0.05x10 ⁻⁶ MeV) ²
Magnetic Ressonance	1.5x10 ⁴	(8.6x10 ⁻⁶ MeV) ²
magnet - CERN	8.4x10 ⁴	(20.5x10 ⁻⁶ MeV) ²
frog levitation *	10 ⁵	(25x10 ⁻⁶ MeV) ²
Critical quantum field of the electron	4.4 x 10 ¹³	(0.5 MeV) ² = m _e ²
Magnetares (field on the surface)	5.0x10 ¹⁵	(5 MeV) ² = (10 m _e) ²
(Au+Au) Heavy ion collisions	10 ¹⁹	$(400 \text{ MeV})^2 = (3\mathbf{m}_{\pi})^2$

(1 Tesla = 10⁴ Gauss)

* Andre Geim - Ig Nobel-2000 and Nobel-2010 (graphene)

Let's consider relativistic particles and, therefore, we will start by discussing the appropriate equation of motion for this case, namely the Dirac equation. In the non-relativistic case, we heuristically obtain the Schrödinger equation from the energy

$$E = \frac{\vec{p}^2}{2m} = \frac{p_x^2 + p_y^2 + p_z^2}{2m}$$

using the prescription:

$$E
ightarrow i rac{\partial}{\partial t} \ , \ p_x
ightarrow rac{\hbar}{i} rac{\partial}{\partial x} \ , \ p_y
ightarrow rac{\hbar}{i} rac{\partial}{\partial y}, \ \ p_z
ightarrow rac{\hbar}{i} rac{\partial}{\partial z}$$

we obtain

$$i\hbar \frac{\partial}{\partial t}\psi(\vec{r},t) = -\frac{\hbar^2}{2m}\nabla^2\psi(\vec{r},t)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

In relativistic case the energy is given by:

$$\mathsf{E} = \sqrt{\vec{p}^2 c^2 + m^2 c^4}$$

using the prescription:

$$E
ightarrow i rac{\partial}{\partial t} \ , \ p
ightarrow rac{\hbar}{i} ec
abla ec
abla$$

we obtain

$$i\hbar \frac{\partial}{\partial t}\psi(\vec{r},t) = \sqrt{-c^2\hbar^2\vec{
abla}^2 + m^2c^4} \ \psi(\vec{r},t)$$

Extremely complex equation (nature is simpler!)

▲ロト ▲ 同 ト ▲ 国 ト ▲ 国 ト ク Q (~)

Dirac's idea was to "take the square root" of:

$$E = \sqrt{\vec{p}^2 c^2 + m^2 c^4} , \quad E \to i \frac{\partial}{\partial t} , \quad p \to \frac{\hbar}{i} \vec{\nabla}$$
$$E = i\hbar \frac{\partial}{\partial t} \psi(\vec{r}, t) = H_D \psi(\vec{r}, t) = \left(c\vec{\alpha} \cdot \vec{p} + \beta m c^2 \right) \psi(\vec{r}, t)$$

Requiring that in the operatorial form $E^2 = H_D^2 = \rho^2 c^2 + m^2 c^4$ (\rightarrow relativistic dispersion relation) we can determine $\vec{\alpha}$ and β .

$$\left(c\vec{\alpha}\cdot\vec{p}+\beta mc^{2}\right) \left(c\vec{\alpha}\cdot\vec{p}+\beta mc^{2}\right)\psi(\vec{r},t)=(c^{2}\vec{p}^{2}+m^{2}c^{4})\psi(\vec{r},t)$$

For the last equation to have a solution $\vec{\alpha}$ and β must be matrices.

The minimum dimension of the matrices α_i , $i = x, y, z \in \beta$ that satisfy the desired conditions is 4. A standard representation is the following:

$$\alpha_i = \begin{pmatrix} \mathbf{0}_{2\times 2} & \sigma_i \\ \sigma_i & \mathbf{0}_{2\times 2} \end{pmatrix} , \ i = \mathbf{x}, \mathbf{y}, \mathbf{z}, \ , \ \beta = \begin{pmatrix} \mathbf{1}_{2\times 2} & \mathbf{0}_{2\times 2} \\ \mathbf{0}_{2\times 2} & -\mathbf{1}_{2\times 2} \end{pmatrix} ,$$

where σ_i are the Pauli matrices:

$$\sigma_{X} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) , \ \sigma_{Y} = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right) , \ \sigma_{Z} = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) ,$$

as an example:

$$\alpha_{\mathbf{X}} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} , \ \beta = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} , \ \psi(\vec{r},t) = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

The Dirac equation is given by:

$$i\hbar\frac{\partial}{\partial t}\psi(\vec{r},t) = H_D \,\psi(\vec{r},t) = \left(c\vec{\alpha}\cdot\vec{p} + \beta mc^2\right) \,\psi(\vec{r},t)$$

Let's rewrite the Dirac equation in a more compact form using the γ Dirac matrices:

$$\gamma_0 = \beta$$
 , $\gamma_i = \beta \alpha_i$, $i = x, y, z$

multiplying the Dirac equation by β

$$i\hbar\beta \frac{\partial}{\partial t}\psi(\vec{r},t) = \left(c\beta\vec{\alpha}\cdot\vec{p} + (\beta)^2mc^2\right)\psi(\vec{r},t)$$

or even

$$\left(i\hbar\gamma_0\frac{\partial}{\partial ct}+\vec{\gamma}\cdot i\hbar\vec{\nabla}\right)\psi(\vec{r},t)=\textit{mc}\;\psi(\vec{r},t)$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

Using natural units: h=1 e c=1

$$\begin{pmatrix} \boldsymbol{p} - \boldsymbol{m} \end{pmatrix} \Psi(t, \vec{r}) = 0 , \quad \boldsymbol{p} = \boldsymbol{p}^{\mu} \gamma_{\mu} , \\ i \partial_{t} \Psi(t, \vec{r}) = H_{D} \Psi(t, \vec{r}) = \left(\vec{\alpha} \cdot \hat{\vec{p}} + \beta \boldsymbol{m} \right) \Psi(t, \vec{r}) \\ i \frac{\partial}{\partial t} \psi(\vec{r}, t) = \left[\begin{pmatrix} 0 & \vec{\sigma} \cdot \vec{p} \\ \vec{\sigma} \cdot \vec{p} & 0 \end{pmatrix} + \begin{pmatrix} \boldsymbol{m} & 0 \\ 0 & -\boldsymbol{m} \end{pmatrix} \right] \psi(\vec{r}, t)$$

Ansatz to find the positive energy solution:

$$\Psi(\vec{r},t) = \Psi(\vec{p})e^{-ip^{\mu}x_{\mu}} = \begin{bmatrix} \chi \\ \phi \end{bmatrix} e^{-i(Et-\vec{p}\cdot\vec{r})}$$

Substituting into the Dirac Equation:

$$E\left[\begin{array}{c} \chi\\ \phi \end{array}\right] = \left(\begin{array}{c} m & \vec{\sigma} \cdot \vec{p}\\ \vec{\sigma} \cdot \vec{p} & -m \end{array}\right) \left[\begin{array}{c} \chi\\ \phi \end{array}\right]$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Which results in the following 2×2 matrix equations

$$E \chi = \vec{\sigma} \cdot \vec{p} \phi + m \chi \ , \ E \phi = \vec{\sigma} \cdot \vec{p} \chi - m \phi$$

Which, isolating ϕ on the right-hand side, results in :

$$\phi = \frac{\vec{\sigma} \cdot \vec{p}}{\mathbf{E} + \mathbf{m}} \, \chi$$

The positive and negative energy solutions are:

$$\begin{split} \Psi^{(+)}(\vec{r},t) &= N \begin{bmatrix} \chi_s \\ \frac{\vec{\sigma} \cdot \vec{p}}{\vec{E} + m} \chi_s \end{bmatrix} e^{-ip^{\mu} x_{\mu}} &= u_s e^{-ip^{\mu} x_{\mu}} \\ \Psi^{(-)}(\vec{r},t) &= N \begin{bmatrix} \frac{\vec{\sigma} \cdot \vec{p}}{\vec{E} + m} \chi_s \\ \chi_s \end{bmatrix} e^{ip^{\mu} x_{\mu}} &= v_s e^{ip^{\mu} x_{\mu}} \end{split}$$

N corresponds to the normalization constant, and χ to the Pauli spinor:

$$N = \sqrt{rac{E+m}{2E}}$$
, $\chi_+ = \begin{bmatrix} 1\\0 \end{bmatrix}$, $\chi_- \begin{bmatrix} 0\\1 \end{bmatrix}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Considering the case where the particle's momentum is zero:

$$\vec{p} = 0 \rightarrow i\partial_t \Psi(t, \vec{r}) = H_D \Psi(t, \vec{r}) = \left(\vec{\alpha} \cdot \hat{\vec{p}} + \beta m\right) \Psi(t, \vec{r}) = \beta m \Psi(t, \vec{r})$$

And the ansatz for the positive and negative energy solutions:

$$\Psi^{(+)}(\vec{r},t) = u_s e^{-ip^{\mu}x_{\mu}} = u_s e^{-iEt}$$
, $\Psi^{(-)}(\vec{r},t) = v_s e^{ip^{\mu}x_{\mu}} = v_s e^{iEt}$

$$E \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} e^{-iEt} = m \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} e^{-iEt}$$

$$i\partial_t \Psi^{(-)}(t,\vec{r}) = \beta m \Psi^{(-)}(t,\vec{r}) \Longrightarrow$$
$$-E \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} e^{iEt} = m \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} e^{iEt}$$

The four independent solutions are:

$$\begin{split} \Psi_{\uparrow}^{(+)}(\vec{r},t) &= \begin{bmatrix} \chi_{+} \\ 0 \end{bmatrix} e^{-iEt} , \ \Psi_{\downarrow}^{(+)}(\vec{r},t) = \begin{bmatrix} \chi_{-} \\ 0 \end{bmatrix} e^{-iEt} \\ \Psi_{\uparrow}^{(-)}(\vec{r},t) &= \begin{bmatrix} 0 \\ \chi_{+} \end{bmatrix} e^{iEt} , \ \Psi_{\downarrow}^{(-)}(\vec{r},t) = \begin{bmatrix} 0 \\ \chi_{-} \end{bmatrix} e^{iEt} \\ \mathcal{H}_{D}\Psi_{s}^{(+)}(t,\vec{r}) &= E\Psi_{s}^{(+)}(t,\vec{r}) = m\Psi_{s}^{(+)}(t,\vec{r}) , \ s = \{\uparrow,\downarrow\} \text{ positive energy} \end{split}$$

 $H_D \Psi_s^{(-)}(t, \vec{r}) = E \Psi_s^{(-)}(t, \vec{r}) = -m \Psi_s^{(-)}(t, \vec{r}) , \ s = \{\uparrow, \downarrow\}$ negative energy

Dirac Sea \rightarrow set of negative energy states

$$E=\pm\sqrt{p^2c^2+m^2c^4}$$

ヘロト ヘヨト ヘヨト

3

Particle-Hole Pair Creation (e^-e^+) (Electron-Positron) Dirac Sea Hole ightarrow Positron

Particle in the Presence of an Electromagnetic Field

The free Dirac equation:

$$i\hbar\frac{\partial}{\partial t}\psi(\vec{r},t) = H_D \,\psi(\vec{r},t) = \left(\vec{\alpha}\cdot\hat{\vec{p}} + \beta m\right) \,\psi(\vec{r},t)$$

Transforms in the Presence of an Electromagnetic Field $A^{\mu}(\vec{x}, t) = (\phi(\vec{x}, t), \vec{A}(\vec{x}, t))$ in:

$$i\hbar\frac{\partial}{\partial t}\psi(\vec{r},t) = H_{\mathcal{D}}\,\psi(\vec{r},t) = \left(\vec{\alpha}\cdot(\vec{\hat{p}}-q\vec{A})+\beta m\right)\,\psi(\vec{r},t) + q\phi\psi(\vec{r},t)$$

Rearranging and multiplying by $\beta = \gamma_0$ to rewrite the equation in terms of matrices, $\gamma^{\mu} = (\gamma_0, \vec{\gamma}) = (\beta, \beta \alpha)$

$$\left(\gamma_0(\hat{p}_0-q\phi)-\vec{\gamma}\cdot(\hat{\vec{p}}-q\vec{A})-m\right)\,\psi(\vec{r},t)=0$$

Particle in the Presence of an Electromagnetic Field

Recalling the 4-vector notation, which the prescription corresponds to

$$\begin{aligned} x^{\mu} &= (t, \vec{x}) \ , \ x_{\mu} &= (t, -\vec{x}) \ , \ \partial^{\mu} \equiv \frac{\partial}{\partial x_{\mu}} = (\frac{\partial}{\partial t}, -\nabla) \ , \\ p^{\mu} &= (\hat{p_0}, \hat{\vec{p}}) = i\hbar(\frac{\partial}{\partial t}, -\nabla) \ , \ \ \boldsymbol{A}^{\mu} = (\phi, \vec{A}) \end{aligned}$$

$$\left(\gamma_0(\hat{p}_0 - q\phi) - \vec{\gamma} \cdot (\hat{\vec{p}} - q\vec{A}) - m\right) \psi(\vec{r}, t) = \left(\gamma_\mu(p^\mu - qA^\mu) - m\right) \psi(\vec{r}, t) = 0$$

Therefore, to describe a particle in the presence of an external electromagnetic field, we use the prescription: (Mininal coupling) :

$$p^{\mu} \rightarrow p^{\mu} - qA^{\mu} \Rightarrow i\hbar \frac{\partial}{\partial t} \rightarrow i\hbar \frac{\partial}{\partial t} - q\phi \ , \ -i\hbar \nabla \rightarrow -i\hbar \nabla - q\overline{A}$$

Particle in a Magnetic Field

Let's Introduce the External Magnetic Field \vec{B} via Minimal Coupling:

$$p\!\!\!/ p \equiv \hat{p}^{\mu} \gamma_{\mu}
ightarrow (\hat{p}^{\mu} - q A^{\mu}) \gamma_{\mu} \; ,$$

q= particle charge $A^{\mu}=~(\phi,ec{A})~=~(0,0,Bx,0)$ (Landau gauge)

$$\Rightarrow \vec{B} = \nabla \times \vec{A} = B\hat{z} , \quad \nabla \cdot \vec{A} = 0 \quad , \vec{E} = 0 \quad , \phi = 0$$

$$(\not p - q \vec{A} - m) \Psi(t, \vec{r}) = 0 ,$$

$$i \partial_t \Psi(t, \vec{r}) = H(A^{\mu}(\vec{r})) \Psi(t, \vec{r}) = \left(\vec{\alpha} \cdot \left[\hat{\vec{p}} - q \vec{A}(x^{\mu}) \right] + \beta m \right) \Psi(t, \vec{r})$$

Particle in a Magnetic Field

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

Let's consider an electron (q=-e) , and Landau gauge ($A^{\mu}=(0,0,Bx,0)$), e= proton charge > 0

The Dirac equation assumes the following expression:

$$i\partial_t \Psi(t,\vec{r}) = H(x)\Psi(t,\vec{r}) = \left(\vec{\alpha} \cdot \left[\hat{\vec{p}} + eBx\hat{j}\right] + \beta m\right)\Psi(t,\vec{r})$$
$$i\frac{\partial}{\partial t}\psi(\vec{r},t) = \left[\begin{pmatrix} 0 & \vec{\sigma} \cdot \left[\hat{\vec{p}} + eBx\hat{j}\right] \\ \vec{\sigma} \cdot \left[\hat{\vec{p}} + eBx\hat{j}\right] & 0 \end{pmatrix} + \begin{pmatrix} m & 0 \\ 0 & -m \end{pmatrix} \right]\psi(\vec{r},t)$$

Analogously to what we did when B=0, we will use an ansatz for the solution (positive energy)

$$\Psi(t,\vec{r}) = f(x)e^{-iEt+ip_yy+ip_zz}$$
, $f(x) \rightarrow 4$ -spinor

Johnson-Lippmann solution

 \Rightarrow ansatz for the solution (positive energy):

$$\Psi(t,\vec{r}) = \begin{pmatrix} C_1 v_{n-1}(\xi) \\ C_2 v_n(\xi) \\ C_3 v_{n-1}(\xi) \\ C_4 v_n(\xi) \end{pmatrix} e^{-iEt+ip_y y+ip_z z}$$

A given choice of C_1 , C_2 , C_3 , $C_4 \Rightarrow$ four independent solutions:

$$\Psi^{\epsilon}(\vec{r}) = \begin{bmatrix} \left(\epsilon E_{n} + m\right)v_{n-1}(\xi)\\ 0\\ \epsilon \rho_{z}v_{n-1}(\xi)\\ i\rho_{n}v_{n}(\xi) \end{bmatrix} + \frac{1-s}{2} \begin{bmatrix} 0\\ (\epsilon E_{n} + m)v_{n}(\xi)\\ -i\rho_{n}v_{n-1}(\xi)\\ -\epsilon \rho_{z}v_{n}(\xi) \end{bmatrix} \end{bmatrix}$$

$$\Psi^{\epsilon}(t,\vec{r}) = \frac{(eB)^{1/4}}{(2\pi)} \frac{1}{\sqrt{2\epsilon E_n(\epsilon E_n + m)}} \Psi^{\epsilon}(\vec{r}) e^{-i\epsilon(Et+p_y y+p_z z)}$$

 $\epsilon = +1(-1) \rightarrow \text{positive (negative) state of energy s=+1(-1) <math>\rightarrow \text{spin states up (down)}$ $p_n = \sqrt{2eBn} \quad \xi = (eB)^{1/2}(x + \epsilon \frac{p_y}{eB})$ Convenient notation:

$$\psi^{\epsilon}(\vec{x},t) = \phi^{(\epsilon)}_{n,s,p_{y},p_{z}}(\vec{x})e^{-i\epsilon Et}$$

The Positive Energy Solution for an Electron in the Presence of a Magnetic Field \vec{B} :

$$\Psi^{(+)}(t,\vec{r}) = \begin{pmatrix} C_1 v_{n-1}(\xi) \\ C_2 v_n(\xi) \\ C_3 v_{n-1}(\xi) \\ C_4 v_n(\xi) \end{pmatrix} e^{-iEt+ip_y y+ip_z z}$$
$$= (eB)^{1/2}(x + \frac{p_y}{eB}) , \quad v_n(\xi) = \frac{1}{(\pi^{1/2} 2^n n!)^{1/2}} H_n(\xi) e^{-\frac{1}{2}\xi^2}$$

ξ

 $\frac{p_{v}}{eB}$ Determine the position where the oscillator wave functions are centered. If our system is contained in a box of side *L*:

$$0 \leq \frac{p_y}{eB} \leq L ,$$

$$\sum_{p_x} \to \sum_{n=0}^{\infty} g_n , \quad \sum_{p_y} \to \frac{L}{2\pi} \int dp_y = \frac{L}{2\pi} L eB , \quad \sum_{p_z} \to \frac{L}{2\pi} \int_{-\infty}^{\infty} dp_z$$

$$\frac{2}{V} \sum_{p_x, p_y, p_z} \equiv \frac{2}{(2\pi)^3} \int d^3p \to \sum_{n=0}^{\infty} g_n \frac{eB}{(2\pi)^2} \int_{-\infty}^{\infty} dp_z , \quad g_n = 2 - \delta_{n,0}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で

3. IS THE DIMENSIONAL REDUCTION $3+1 \rightarrow 1+1$ ($2+1 \rightarrow 0+1$) CONSISTENT WITH SPONTANEOUS CHIRAL SYMMETRY BREAKING?

V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B462, 249 (1996)

In this section we consider the question whether the dimensional reduction $3+1 \rightarrow 1+1$ $(2+1 \rightarrow 0+1)$ in the dynamics of the fermion pairing in a magnetic field is consistent with spontaneous chiral symmetry breaking. This question occurs naturally since, due to the Mermin-Wagner-Coleman (MWC) theorem [12], there cannot be spontaneous breakdown of continuous symmetries at D = 1 + 1 and D = 0+1. The MWC theorem is based on the fact that gapless Nambu-Goldstone (NG) bosons cannot exist in dimensions less than 2+1. This is in particular reflected in that the (1 + 1)-dimensional propagator of would be NG bosons would lead to infrared divergences in perturbation theory (as indeed happens in the $1/N_c$ expansion in the (1 + 1)-dimensional Gross-Neveu model with a continuous symmetry [13]).

However, the MWC theorem is not applicable to the present problem. The central point is that the condensate $\langle 0|\bar{\psi}\psi|0\rangle$ and the NG modes are **neutral** in this problem and the dimensional reduction in a magnetic field does not affect the dynamics of the center of mass of **neutral** excitations. Indeed, the dimensional reduction $D \to D-2$ in the fermion propagator, in the infrared region, reflects the fact that the motion of **charged** particles is restricted in the directions perpendicular to the magnetic field. Since there is no such restriction for the motion of

Particle in a Magnetic Field

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

- Landau Levels with n=1,2,3... are doubly degenerate (spin s = ±1)
- Ground state, n = 0, is not degenerate and has spin s=-1 (for the electron) (In the figure we take $p_z = 0$, $\frac{eB}{M} = 1$)

DIRAC FERMIONS AT B≠0

• Dirac equation for charged fermions:

 $(i\gamma^{\mu}D_{\mu}-m)\psi=0$

where $A_{\mu} = (A_0, -\vec{A})$ and the Landau gauge $\vec{A} = (-By, 0, 0)$ is used.

• Look for a solution in the form: $\psi = (i\gamma^{\mu}D_{\mu} + m)\phi$. Then,

$$\left[-\partial_0^2 + (\partial_x + ieBy)^2 + \partial_y^2 + \partial_z^2 + i\gamma^1\gamma^2eB - m^2\right]\phi = 0$$

• Normalized solutions for ϕ have the form

$$\phi_{k,\pm} \propto \frac{1 \pm i \operatorname{sgn}(eB) \gamma^1 \gamma^2}{2} \varphi_k(y) e^{-i\omega t + i p_x x + i p_z z}$$

where φ_k are harmonic oscillator wave functions, i.e.,

$$\varphi_k \propto H_k(\xi) e^{-\frac{\xi^2}{2}}, \quad \xi = \frac{y}{l} + p_x l \operatorname{sgn}(eB) \quad \text{and} \quad l = \frac{1}{\sqrt{|eB|}}$$

• The dispersion relation is given by

$$\omega = E_n^{\pm} = \pm \sqrt{2n|eB| + p_z^2 + m^2}$$

where
$$n = k + \frac{1}{2} + \text{sgn}(eB)s_z$$
 and $s_z = \pm \frac{1}{2}$ is an eigenvalue of $\frac{i}{2}\gamma^1\gamma^2$
orbital spin

2018 XIV International Workshop on Hadron Physics, Florianópolis, Brazil, March 18-23, 2018 6

DEGENERACY OF LANDAU LEVELS

• The Landau level energies are independent of p_x

 $E_n^{\pm} = \pm \sqrt{2n|eB| + p_z^2 + m^2}$

- This means that each level is highly degenerate
- Let's calculate the degeneracy by confining the L_x system in a finite box of size $L_x \times L_y$ with periodic boundary conditions
- The wave function is a plane wave in the x direction: $\psi(x) \propto e^{ip_x x}$

$$\psi(0) = \psi(L_x) \implies e^{ip_x L_x} = 1 \implies p_x = \frac{2\pi n}{L_x}, n = 1, 2, ..., N_{\text{max}}$$

• The value of p_x sets the center of the Landau orbit in *y*-direction:

$$y_c \approx p_x l^2 \implies p_{x,\max} l^2 \lesssim L_y \implies \frac{2\pi N_{\max}}{L_x} \frac{1}{|eB|} \approx L_y \implies \frac{N_{\max}}{L_x L_y} \approx \frac{|eB|}{2\pi}$$

• The degeneracy is proportional to the field strength and the size (area) of the system in the spatial directions perpendicular to \vec{B} $N_{\max} \approx \frac{|eB|}{2\pi} L_x L_y$

Igor Shovkovy Slide

2018 XIV International Workshop on Hadron Physics, Florianópolis, Brazil, March 18-23, 2018

LANDAU ENERGY SPECTRUM

Example: Dirac Lagrangian

 $\mathcal{L} = \mathcal{L} \left(\bar{\Psi}(t,\vec{r}), \Psi(t,\vec{r}), \partial^{\mu} \Psi(t,\vec{r}) \right) = \bar{\Psi}(t,\vec{r}) \left(i \gamma_{\mu} \partial^{\mu} - m \right) \Psi(t,\vec{r}) , \ \bar{\Psi} \equiv \Psi^{\dagger} \gamma_{0}$ Equation of motion for $\bar{\Psi}$:

$$\frac{\partial \mathcal{L}}{\partial \bar{\Psi}} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \bar{\Psi}} = 0 \ , \ \frac{\partial \mathcal{L}}{\partial \bar{\Psi}} = (i \gamma_{\mu} \partial^{\mu} - m) \Psi \ , \ \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \bar{\Psi}} = 0$$

that results in the Dirac equation:

$$(i\gamma_{\mu}\partial^{\mu}-m)\Psi(t,\vec{r})=0 \rightarrow (\not p-m)\Psi(t,\vec{r})=0$$

Equation of motion for Ψ :

$$\frac{\partial \mathcal{L}}{\partial \Psi} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \Psi} = 0 \ , \ \frac{\partial \mathcal{L}}{\partial \Psi} = -\bar{\Psi}m \ , \ \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \Psi} = \bar{\Psi}i\gamma^{\mu}$$

that results in the Dirac equation:

$$-\bar{\Psi}m - \partial_{\mu}\bar{\Psi}i\gamma^{\mu} = 0 \rightarrow \bar{\Psi}\left(\overleftarrow{\partial_{\mu}}i\gamma^{\mu} + m\right) = 0 \rightarrow \bar{\Psi}\left(\overleftarrow{\not{p}} + m\right) = 0$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Example: Dirac Hamiltonian

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The conjugate momentum to the fields $\Psi \in \overline{\Psi}$ are given by:

$$\Pi_{\Psi} = \frac{\partial \mathcal{L}}{\partial \frac{\partial \Psi}{\partial t}} = \frac{\partial \mathcal{L}}{\partial \partial_0 \Psi} , \quad \Pi_{\bar{\Psi}} = \frac{\partial \mathcal{L}}{\partial \frac{\partial \bar{\Psi}}{\partial t}} = \frac{\partial \mathcal{L}}{\partial \partial_0 \bar{\Psi}}$$
$$\mathcal{L} = \bar{\Psi}(t, \vec{r}) (i\gamma_{\mu} \partial^{\mu} - m) \Psi(t, \vec{r}) \Longrightarrow \Pi_{\Psi} = \bar{\Psi} i\gamma_0 = i\Psi^{\dagger} , \quad \Pi_{\bar{\Psi}} = 0$$

Therefore the Hamiltonian density is given by:

$$\mathcal{H} = \Pi_{\Psi} \dot{\Psi} + \Pi_{\bar{\Psi}} \dot{\bar{\Psi}} - \mathcal{L} = i \Psi^{\dagger} \partial_{0} \Psi - \bar{\Psi} (i \gamma_{\mu} \partial^{\mu} - m) \Psi$$

simplifying the expression:

$$\mathcal{H} = i\Psi^{\dagger}\partial_{0}\Psi - \Psi^{\dagger}\gamma_{0}\left(i\gamma_{\mu}\partial^{\mu} - m\right)\Psi = i\Psi^{\dagger}\partial_{0}\Psi - \Psi^{\dagger}\gamma_{0}\left(i\gamma_{0}\partial_{0} + i\vec{\gamma}\cdot\nabla - m\right)\Psi$$

we obtain:

$$\mathcal{H} = \Psi^{\dagger} (-i\vec{\alpha} \cdot \nabla + \beta m) \Psi \Longrightarrow H = \int d^3 r \mathcal{H} = \int d^3 r \Psi^{\dagger} (-i\vec{\alpha} \cdot \nabla + \beta m) \Psi$$

Free Fields Quantization

Let's consider the **canonical quantization** in Quantum Field Theory. As an example we will take the scalar field:

$$\operatorname{QM} \left\{ \begin{array}{l} \left[q_i, p_j \right] = i\hbar\delta_{i \ j} \\ \left[q_i, q_j \right] = \left[p_i, p_j \right] = 0 \end{array} \right. , \operatorname{QFT} \left\{ \begin{array}{l} \left\{ \Psi_{\alpha}(\vec{r}, t), \Pi_{\beta}(\vec{r}', t) \right\} = i\delta(\vec{r} - \vec{r}')\delta_{\alpha\beta} \\ \left\{ \Psi_{\alpha}(\vec{r}, t), \Psi_{\beta}(\vec{r}', t) \right\} = \left\{ \Pi_{\alpha}(\vec{r}, t), \Pi_{\beta}(\vec{r}', t) \right\} = 0 \end{array} \right.$$

we obtain

$$\Pi_{\alpha} = \frac{\partial \mathcal{L}}{\partial \partial^0 \Psi_{\alpha}} = i \Psi^{\dagger}(\vec{r}, t)$$

and, therefore the commutators of the scalar fields need to satisfy the canonical quantization relations:

$$\begin{split} \left\{ \Psi_{\alpha}(\vec{r},t),\Psi_{\beta}(\vec{r}\,',t) \right\} &= \left\{ \Psi_{\alpha}^{\dagger}(\vec{r},t),\Psi_{\beta}^{\dagger}(\vec{r}\,',t) \right\} = 0, \quad \left\{ \Psi_{\alpha}(\vec{r},t),\Psi_{\beta}^{\dagger}(\vec{r}\,',t) \right\} = i\delta(\vec{r}-\vec{r}\,')\delta_{\alpha\beta} \\ \hat{\Psi}(x) &= \sum_{r} \left(\hat{a}_{r}\phi_{r}^{(+)}(\vec{x})e^{-iE_{r}t} + \hat{b}_{r}^{\dagger}\phi_{r}^{(-)}(\vec{x})e^{iE_{r}t} \right) \\ \hat{\Psi}^{\dagger}(x) &= \sum_{r} \left(\hat{a}_{r}^{\dagger}\phi_{r}^{(+)}(\vec{x})^{\dagger}e^{iE_{r}t} + \hat{b}_{r}\phi_{r}^{(-)}(\vec{x})^{\dagger}e^{-iE_{r}t} \right) , \end{split}$$

We need to do the interpretation of \hat{a}_r and \hat{a}_r^\dagger as creation and annihilation operators of fermionic particles

and for \hat{b}_r and \hat{b}_r^{\dagger} as creation and annihilation operators for fermionic anti-particles (electron-positron or quark-antiquark)

$$\{\hat{a}_{r}, \hat{a}_{r'}^{\dagger}\} = \{\hat{b}_{r}, \hat{b}_{r'}^{\dagger}\} = \delta_{r \ r'} \quad , \quad \{\hat{a}_{r}, \hat{a}_{r'}\} = \{\hat{b}_{r}, \hat{b}_{r'}\} = 0 \; .$$

SU(2) Nambu-Jona-Lasinio model (NJL)

The Lagrangian of the NJL model with two flavors (u and d quarks):

$$\mathcal{L} = \overline{\psi} \left(i \partial \!\!\!/ - \tilde{m} \right) \psi + G \left[(\overline{\psi} \psi)^2 + (\overline{\psi} i \gamma_5 \vec{\tau} \psi)^2 \right]$$

interaction terms : scalar-isoscalar + pseudoscalar-isovector

 $ec{ au}$ are the isospin Pauli matrices

 ψ is the Dirac fields of quaks u and d,

$$\psi = \begin{pmatrix} \psi_u \\ \psi_d \end{pmatrix}, \quad \tilde{m} = \begin{pmatrix} m_u & 0 \\ 0 & m_d \end{pmatrix}, \quad Q = \begin{pmatrix} q_u = \frac{2}{3}e & 0 \\ 0 & q_d = -\frac{1}{3}e \end{pmatrix}$$

We consider $m_u = m_d = m$

SU(2) Nambu-Jona-Lasinio model (NJL)

The Lagrangian of the NJL model to be suitable as an effective model for QCD (Quantum Chromodynamics)

 \rightarrow It must reflect the symmetries (properties) of the strong interaction! Positive points:

- Invariant under global phase transformations \rightarrow Baryon number conservation
- The Lagrangian has chiral symmetry(in the limit $m_u = m_d = 0$)
- It has the spontaneous symmetry breaking mechanism (dynamic mass generation)
- The entire QCD phase diagram can be described by a single effective model (a single equation of state)

Negative points:

- The model is non-renormalizable (requires regularization, Λ-cutoff)
- The interaction does not have confinement (there are no gluons or color charge)

NJL model in the mean field approximation (MFA)

$$\mathcal{L} = \overline{\psi} \left(i \not\!\!\!\partial - \tilde{m} \right) \psi + G \left[(\overline{\psi} \psi)^2 + (\overline{\psi} i \gamma_5 \vec{\tau} \psi)^2 \right]$$

 $\text{MFA} \rightarrow \text{Linearization}$ of the interaction terms of $\mathcal L$ neglecting quadratic fluctuations:

$$\begin{split} \hat{O} &\equiv \langle \hat{O} \rangle + (\hat{O} - \langle \hat{O} \rangle) &= \langle \hat{O} \rangle + \Delta \hat{O} \quad , \quad \hat{O} &= (\overline{\psi}\psi) \text{ or } (\overline{\psi}i\gamma_5\tilde{\tau}\psi) \\ \\ \mathsf{MFA} \to (\Delta \hat{O})^2 &\cong 0 ; \langle \overline{\psi}i\gamma_5\vec{\tau}\psi \rangle = 0 \text{ (symmetry)} \\ \hat{O}_1\hat{O}_2 &= (\langle \hat{O}_1 \rangle + \Delta \hat{O}_1)(\langle \hat{O}_2 \rangle + \Delta \hat{O}_2) \approx \langle \hat{O}_1 \rangle \langle \hat{O}_2 \rangle + \langle \hat{O}_1 \rangle \Delta \hat{O}_2 + \langle \hat{O}_2 \rangle \Delta \hat{O}_1 \\ \\ &= \langle \hat{O}_1 \rangle \langle \hat{O}_2 \rangle + \langle \hat{O}_1 \rangle (\hat{O}_2 - \langle \hat{O}_2 \rangle) + \langle \hat{O}_2 \rangle (\hat{O}_1 - \langle \hat{O}_1 \rangle) = \langle \hat{O}_1 \rangle \hat{O}_2 + \langle \hat{O}_2 \rangle \hat{O}_1 - \langle \hat{O}_1 \rangle \langle \hat{O}_2 \rangle \end{split}$$

therefore:

$$(\overline{\psi}\psi)^2 \approx 2 \langle \overline{\psi}\psi \rangle \overline{\psi}\psi - \langle \overline{\psi}\psi \rangle^2$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

NJL model in the mean field approximation (MFA)

$$\mathcal{L} \to \mathcal{L}_{MFA} = \overline{\psi} \left(i\partial \!\!\!/ - \tilde{m} \right) \psi + G \left[2 \langle \overline{\psi} \psi \rangle \overline{\psi} \psi - \langle \overline{\psi} \psi \rangle^2 \right]$$

defining the constituent mass

$$M = m - 2G\left\langle \overline{\psi}\psi \right\rangle$$

we obtain

$$\mathcal{L}_{MFA} = \overline{\psi} \left(i \partial \!\!\!/ - M
ight) \psi - G \left\langle \overline{\psi} \psi \right\rangle^2 \,,$$

As we have seen, the Hamiltonian is easily obtained from the above Lagrangian:

$$\hat{H}_{MFA} = \int d^{3}r \mathcal{H} = \int d^{3}r \left[\Psi^{\dagger} \left(-i\vec{\alpha} \cdot \nabla + \beta M \right) \Psi + G \left\langle \overline{\psi}\psi \right\rangle^{2} \right]$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

NJL model in the mean field approximation (MFA)

From the Hamiltonian operator, we obtain the energy of the system., *E*, calculating its statistical average value at T=0:

$$E = \langle \hat{H}_{MFA} \rangle = \int d^{3}r \mathcal{H} = \int d^{3}r \left[\langle \Psi^{\dagger} \left(-i\vec{\alpha} \cdot \nabla + \beta M \right) \Psi \rangle + G \left\langle \overline{\psi}\psi \right\rangle^{2} \right]$$

noting that $H_{Dirac} = -i\vec{\alpha} \cdot \nabla + \beta M$ and that Dirac field is expanded in a basis of H_{Dirac} :

$$\Psi(\vec{r},t) = \sum_{s} \int \frac{d^{3}k}{(2\pi)^{3/2}} e^{i\vec{k}\cdot\vec{r}} \left(v_{s} e^{iE(k)t} b^{\dagger}_{-\vec{k},-s} + u_{s} e^{-iE(k)t} a_{\vec{k},s} \right)$$

where $a_{\vec{k},s}^{\dagger}$ is the fermion creation operator(quark) with linear momentum \vec{k} and spin s and $b_{\vec{k},s}^{\dagger}$ is the anti-fermion creation operator(antiquark) corresponding to the linear momentum \vec{k} and spin s and $E(k) = \sqrt{k^2 + M^2}$. The operators $a_{\vec{k},s}$ and $b_{\vec{k},s}$ are the corresponding annihilation operators.

NJL in MFA - quark gas (fermions)

Substituting the expression for the field into the Dirac Hamiltonian operator, we can show that:

$$\frac{1}{V}\int d^{3}r\Psi^{\dagger}\left(-i\vec{\alpha}\cdot\nabla+\beta M\right)\Psi=\sum_{\xi}\int\frac{d^{3}p}{2\pi^{3}}\left(b_{\vec{p},\xi}^{\dagger}b_{\vec{p},\xi}+a_{\vec{p},\xi}^{\dagger}a_{\vec{p},\xi}-1\right)$$

The vacuum energy density can be calculated using the expression above for a quark gas at T = 0:

$$\begin{split} \epsilon = &< 0|\sum_{\xi} \int \frac{d^3p}{2\pi^3} \left(b^{\dagger}_{\vec{p},\xi} b_{\vec{p},\xi} + a^{\dagger}_{\vec{p},\xi} a_{\vec{p},\xi} - 1 \right) |0> + G\langle \overline{\psi}\psi \rangle^2 \\ \epsilon = &-\frac{2N_c N_f}{(2\pi)^3} \int_{|\vec{p}| < \Lambda} d^3p \sqrt{p^2 + M^2} + G\langle \overline{\psi}\psi \rangle^2 \\ = &- \frac{N_c N_f}{8\pi^2} \left(2\Lambda E_{\Lambda}^3 - M^2 \Lambda E_{\Lambda} - M^4 \ln\left[\frac{\Lambda + E_{\Lambda}}{M}\right] \right) + G\langle \overline{\psi}\psi \rangle^2 \end{split}$$

where $N_f=2$, $N_c=3$ and $E_{\Lambda}=\sqrt{\Lambda^2+M^2}$ and we introduce the cutoff Λ to regularize the integral.

NJL in MFA - quark gas (fermions)

usando que

$$M = m - 2G\left\langle \overline{\psi}\psi \right\rangle \rightarrow \left\langle \overline{\psi}\psi \right\rangle = -\frac{M - m}{2G}$$

Therefore, we can rewrite the energy density, ϵ , as:

$$\epsilon = -\frac{N_c N_f}{8\pi^2} \left(2\Lambda E_{\Lambda}^3 - M^2 \Lambda E_{\Lambda} - M^4 \ln\left[\frac{\Lambda + E_{\Lambda}}{M}\right]\right) + \frac{(M-m)^2}{4G}$$

Gap Equation

To obtain the Gap equation, we need to calculate

$$\left\langle \overline{\psi}\psi\right\rangle = \left\langle \psi^{\dagger}\gamma_{0}\psi\right\rangle$$

where

$$\psi = \sum_{s} \int \frac{d^{3}k}{(2\pi)^{3/2}} e^{i\vec{k}\cdot\vec{r}} \left(v_{s}(-\vec{k})e^{iE(k)t}b^{\dagger}_{-\vec{k},-s} + u_{s}(\vec{k})e^{-iE(k)t}a_{\vec{k},s} \right)$$

$$\psi^{\dagger} = \sum_{s} \int \frac{d^{3}k}{(2\pi)^{3/2}} e^{-i\vec{k}\cdot\vec{r}} \left(v_{s}^{\dagger}(-\vec{k})e^{-iE(k)t}b_{-\vec{k},-s} + u_{s}^{\dagger}(\vec{k})e^{iE(k)t}a^{\dagger}_{\vec{k},s} \right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

NJL in MFA - calculation of the gap equation

$$\begin{split} \left\langle \overline{\psi}\psi\right\rangle &= \left\langle \psi^{\dagger}\gamma_{0}\psi\right\rangle = \sum_{s}\int\frac{d^{3}k}{(2\pi)^{3/2}}e^{-i\vec{k}\cdot\vec{r}}\sum_{s'}\int\frac{d^{3}k'}{(2\pi)^{3/2}}e^{i\vec{k}'\cdot\vec{r}}\times\\ &< 0|\left(v_{s}^{\dagger}e^{-iEt}b_{-\vec{k},-s} + u_{s}^{\dagger}e^{iEt}a_{\vec{k},s}^{\dagger}\right)\gamma_{0}\left(v_{s'}e^{iEt}b_{-\vec{k}',-s'}^{\dagger} + u_{s'}e^{-iEt}a_{\vec{k}',s'}\right)|0> \end{split}$$

simplifying

$$\left\langle \overline{\psi}\psi \right\rangle = \sum_{s} \int \frac{d^{3}k}{(2\pi)^{3/2}} e^{-i\vec{k}\cdot\vec{r}} \sum_{s'} \int \frac{d^{3}k'}{(2\pi)^{3/2}} e^{i\vec{k}'\cdot\vec{r}} v_{s}^{\dagger} \gamma_{0} v_{s'} < 0 |b_{-\vec{k},-s} b_{-\vec{k}',-s'}^{\dagger}|0>$$

but,

$$<0|b_{-\vec{k},-s}b^{\dagger}_{-\vec{k}',-s'}|0>=<0|b_{-\vec{k},-s}b^{\dagger}_{-\vec{k}',-s'}+b^{\dagger}_{-\vec{k}',-s'}b_{-\vec{k},-s}|0>=\\<0|\{b_{-\vec{k},-s}, b^{\dagger}_{-\vec{k}',-s'}\}|0>=\delta(\vec{k}-\vec{k}')\delta_{s\,s'}$$

$$\left\langle \overline{\psi}\psi \right\rangle = \sum_{s} \int \frac{d^{3}k}{(2\pi)^{3/2}} e^{-i\vec{k}\cdot\vec{r}} \sum_{s'} \int \frac{d^{3}k'}{(2\pi)^{3/2}} e^{i\vec{k}'\cdot\vec{r}} v_{s}^{\dagger}(-\vec{k})\gamma_{0}v_{s'}(-\vec{k}')\delta(\vec{k}-\vec{k}')\delta_{s\,s'}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

NJL in MFA - calculation of the gap equation

$$\begin{split} \left\langle \overline{\psi}\psi \right\rangle &= \sum_{s} \int \frac{d^{3}k}{(2\pi)^{3/2}} e^{-i\vec{k}\cdot\vec{r}} \sum_{s'} \int \frac{d^{3}k'}{(2\pi)^{3/2}} e^{i\vec{k}'\cdot\vec{r}} v_{s}^{\dagger} \gamma_{0} v_{s'} \delta(\vec{k}-\vec{k}') \delta_{s\,s'}} \\ \left\langle \overline{\psi}\psi \right\rangle &= \sum_{s} \int \frac{d^{3}k}{(2\pi)^{3}} v_{s}^{\dagger}(-\vec{k}) \gamma_{0} v_{s}(-\vec{k}) = \sum_{s} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{E+M}{2E} \\ &\times \left[\chi_{s}^{\dagger} \quad \chi_{s}^{\dagger} \frac{-\vec{\sigma}\cdot\vec{k}}{E+M} \right] \quad \begin{bmatrix} I & 0\\ 0 & -I \end{bmatrix} \quad \begin{bmatrix} \chi_{s} \\ -\vec{\sigma}\cdot\vec{k} \\ E+M \chi_{s} \end{bmatrix} = \\ &= \sum_{s} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{E+M}{2E} \quad \left[\chi_{s}^{\dagger} \quad \chi_{s}^{\dagger} \frac{-\vec{\sigma}\cdot\vec{k}}{E+M} \right] \quad \begin{bmatrix} \chi_{s} \\ \vec{\sigma}\cdot\vec{k} \\ E+M \chi_{s} \end{bmatrix} \\ &= -\sum_{s} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{E+M}{2E} \quad \left[-\chi_{s}^{\dagger}\chi_{s} + \quad \chi_{s}^{\dagger} \frac{\vec{\sigma}\cdot\vec{k}}{E+M} \frac{\vec{\sigma}\cdot\vec{k}}{E+M} \chi_{s} \right] \\ &\text{using that } \vec{\sigma} \cdot \vec{a} = \vec{a} \cdot \vec{b} + \vec{\sigma} \cdot \vec{a} \times \vec{b} \rightarrow \frac{\vec{\sigma}\cdot\vec{k}}{E+M} \frac{\vec{\sigma}\cdot\vec{k}}{E+M} = \frac{k^{2}}{(E+M)^{2}} \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

NJL in MFA - calculation of the gap equation

$$\begin{split} \left\langle \overline{\psi}\psi \right\rangle &= -\sum_{s} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{E+M}{2E} \chi_{s}^{\dagger} \chi_{s} (1 - \frac{k^{2}}{(E+M)^{2}}) \\ \left\langle \overline{\psi}\psi \right\rangle &= -\sum_{s} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{E+M}{2E} \frac{(E+M)^{2} - k^{2}}{(E+M)^{2}} \\ \left\langle \overline{\psi}\psi \right\rangle &= -\sum_{s} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{E+M}{2E} \frac{E^{2} + 2EM + M^{2} - k^{2}}{(E+M)^{2}} \\ \left\langle \overline{\psi}\psi \right\rangle &= -\sum_{s} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{E+M}{2E} \frac{k^{2} + M^{2} + 2EM + M^{2} - k^{2}}{(E+M)^{2}} \\ \left\langle \overline{\psi}\psi \right\rangle &= -\sum_{s} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{E+M}{2E} \frac{2M(E+M)}{(E+M)^{2}} = -2 \int \frac{d^{3}k}{(2\pi)^{3}} \frac{M}{\sqrt{k^{2} + M^{2}}} \end{split}$$

therefore, we obtain the Gap Equation:

$$\left\langle \overline{\psi}\psi \right\rangle = -rac{M-m}{2G}
ightarrow rac{M-m}{2G} = 2N_f N_c \int rac{d^3k}{(2\pi)^3} rac{M}{\sqrt{k^2+M^2}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

SU(2)-NJL model in the presence of a B field

NJL Lagrangian with two flavors:

$$\mathcal{L} = \overline{\psi} \left(i \not\!\!D - \tilde{m} \right) \psi + G \left[(\overline{\psi} \psi)^2 + (\overline{\psi} i \gamma_5 \vec{\tau} \psi)^2 \right] - \frac{1}{4} F^{\mu\nu} F_{\mu\nu}$$

 $F^{\mu
u}=\partial^{\mu}A^{
u}-\partial^{
u}A^{\mu}$ - electromagnetic field tensor

 $D^{\mu} = (i\partial^{\mu} - QA^{\mu})$ - covariant derivative (minimal coupling) we work in Landau gauge $\rightarrow \vec{B} = B\hat{z}$. Using the prescription:

$$\frac{2}{(2\pi)^3} \int d^3 p = \to \sum_{n=0}^{\infty} g_n \frac{eB}{(2\pi)^2} \int_{-\infty}^{\infty} dp_z$$

Thus, the Gap equation transforms into:

$$\frac{M-m}{2G} = N_c \sum_{q=u,d} \sum_{n=0}^{\infty} g_n \frac{|e_q|B}{(2\pi)^2} \int_{-\infty}^{\infty} dp_z \frac{M}{\sqrt{p_z^2 + M^2 + 2eBn}}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Gap equation - NJL

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Effective mass increase with $B \rightarrow$ magnetic catalysis effect (MC)

Refs: parameters NJL : M. Buballa, Physics Reports 407 (2005)205

su(2)-NJL EOS: D. P. Menezes, M. Benghi Pinto, S. S. Avancini, A. Pérez Martinez and C. Providência, Phys. Rev. C 79, 035807 (2009).

NJL equation of state with two flavors

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Equation of state using NJL model with two flavors. $B_0 = 1 \times 10^{19}$ Gauss

Mass-Radius diagram of a neutron star

Mass-radius diagram of a neutron star using the NJL model with two flavors. $B_0 = 1 \times 10^{19}$ Gauss β -equilibrium is imposed \rightarrow chemical equilibrium for the reaction: $n \rightleftharpoons p + e^-$

ヘロト ヘヨト ヘヨト

э.

Thermodynamical properties of the model

The mean-field Hamiltonian for the quarks in second quantization is given by:

$$H^{MFA} = \sum_{q=u,d} \sum_{n=0}^{\infty} \sum_{s=\pm 1} \sum_{p_2} \sum_{p_3} \sqrt{M^2 + p_3^2 + 2|Q_q|Bn} \left(\hat{a}_{nsp_2p_3}^{q\dagger} \hat{a}_{nsp_2p_3}^{q} + \hat{b}_{nsp_2p_3}^{q\dagger} \hat{b}_{nsp_2p_3}^{q} - 1 \right)$$

Grand canonical partition function:

$$Z = Tr[e^{-eta(H^{MFA}-\sum_q \mu_q \hat{N}_q)}] \quad , \quad \Omega = -rac{1}{eta}\ln Z \quad ,$$

where β =1/T. Thermodynamic quantities are related to Ω through the following relations:

$$\Omega = \Omega(T, V, \mu_q, \mu_l) = E - TS - \sum_q \mu_q \bar{N}_q - \sum_l \mu_l \bar{N}_l ,$$

$$\Omega(T, V, \mu_q) = -PV , \ F = \Omega(T, V, \mu_q, \mu_l) + \sum_q \mu_q \bar{N}_q , \qquad (1)$$

where F = E - TS is the Helmholtz free energy and the average number of particles is obtained from the expression:

$$\bar{N}_{\alpha} = \frac{1}{\beta} \frac{\partial \ln Z}{\partial \mu_{\alpha}} = -\frac{\partial \Omega}{\partial \mu_{\alpha}} \,.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Due to the particular form of the mean-field Hamiltonian, we have:

$$Z = Tr[e^{-\beta(H^{MFA} - \sum_{q} \mu_q \hat{N}_q)}] = e^{-\beta V(G\sigma^2 + \frac{1}{2}B^2)} Tr[e^{-\beta(H^{MFA} - \sum_{q} \mu_q \hat{N}_q)}]$$

where \bar{H}^{MFA} It corresponds to the NJL model Hamiltonian without $VG\sigma^2$ and $V\frac{1}{2}B^2$. The representation of the occupation numbers in terms of the quark (n_{q_r}) and antiquark (\bar{n}_{q_r}) occupation numbers can be written as:

$$|\tilde{\alpha}\rangle = |n_{q_1}, n_{q_2}...; \bar{n}_{q_1}, \bar{n}_{q_2}, ...\rangle$$
 onde $n_{q_r}, \bar{n}_{q_r} = 0, 1, ..., \infty$ e r = 1, 2, ... ∞

We order, for example, the set of independent quark particle states according to the rule:

$$\{n_{q_r}\} = \{n_{q_{nsp_2p_3}}\} = (n_{q_1}, n_{q_2}, ..., n_{l_{\infty}}),$$

$$Tr[e^{-\beta(\tilde{H}^{MFA}-\sum_{q}\mu_{q}\hat{N}_{q})}] = \sum_{\tilde{\alpha}} \langle \tilde{\alpha} | e^{-\beta(\tilde{H}^{MFA}-\sum_{q}\mu_{q}\hat{N}_{q})} | \tilde{\alpha} \rangle$$
$$= e^{\beta \sum_{q,r} E_{r}^{q}} \times e^{-\beta \sum_{q,r,nqr} (E_{r}^{q}-\mu_{q})n_{qr}} e^{-\beta \sum_{q,r,\bar{n}qr} (E_{r}^{q}+\mu_{q})\bar{n}_{qr}}$$

Fermion occupation numbers can only take the values 0 or 1, and therefore we can write it using products:

$$Z = e^{-\beta V(G\sigma^{2} + \frac{1}{2}B^{2})} e^{\beta \sum_{q,r} E_{r}^{q}} \times \prod_{q,r} \left(1 + e^{-\beta (E_{r}^{q} - \mu_{q})} \right) \prod_{q,r} \left(1 + e^{-\beta (E_{r}^{q} + \mu_{q})} \right)$$

From the partition function, we can obtain the grand canonical thermodynamic potential:

$$\begin{split} \Omega_{Q} &= -\frac{1}{\beta} \ln Z = V(G\sigma^{2} + \frac{1}{2}B^{2}) - \sum_{q,r} E_{r}^{q} \\ &- \frac{1}{\beta} \sum_{q,r} \ln \left(1 + e^{-\beta(E_{r}^{q} - \mu_{q})} \right) - \frac{1}{\beta} \sum_{q,r} \frac{1}{\beta} \ln \left(1 + e^{-\beta(E_{r}^{q} + \mu_{q})} \right) \,. \end{split}$$

We have already shown that:

$$\sum_{r} = \sum_{n,s,p_2,p_3} \Rightarrow V \sum_{n} g_n \frac{|Q|B}{(2\pi)^2} \int_{-\infty}^{\infty} dp_3 .$$

The grand canonical potential can be written as:

$$\begin{split} \omega_{Q} &= \frac{\Omega_{Q}}{V} = \omega_{Q}(0,B) + \frac{1}{2}B^{2} \\ &- \frac{1}{\beta}\sum_{q,n}g_{n}\frac{N_{c}|Q_{q}|B}{(2\pi)^{2}}\int_{-\infty}^{\infty}dp_{3}\left(\ln\left(1 + e^{-\beta(E^{q} - \mu_{q})}\right) + \ln\left(1 + e^{-\beta(E^{q} + \mu_{q})}\right)\right) \,. \end{split}$$

$$\begin{split} \omega_Q(0,B) &= G\sigma^2 - \sum_{q,n} g_n \frac{N_c |Q_q| B}{(2\pi)^2} \int_{-\infty}^{\infty} dp_3 \sqrt{M^2 + p_3^2 + 2|Q_q| Bn} \\ &= \frac{(M - m_c)^2}{4G} + N_c \sum_{q=u,d} l_1^q(B) = \frac{(M - m_c)^2}{4G} + \Omega_{T=0}^{(1-Loop)} , \quad N_c = 3. \end{split}$$

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < つへぐ

Interesting expression

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

$$I_1^q(B) = -\sum_{n=0}^{\infty} (2-\delta_{n0}) \frac{|Q_q|B}{(2\pi)^2} \int_{-\infty}^{\infty} dp_3 \sqrt{M^2 + p_3^2 + 2|Q_q|Bn}$$

This contribution essentially corresponds to the vacuum energy, that is, to the expectation value of the quark Hamiltonian in the vacuum state:

$$\begin{split} & I_{1}^{q}(B) = \left\langle 0 \left| \frac{H_{q}}{V} \right| 0 \right\rangle \\ & = \left\langle 0 \left| \frac{1}{V} \sum_{n=0}^{\infty} \sum_{s=\pm 1} \sum_{P_{2}} \sum_{\rho_{3}} \sqrt{M^{2} + \rho_{3}^{2} + 2|Q_{q}|Bn} \left(\hat{a}_{nsp_{2}p_{3}}^{q} \hat{a}_{nsp_{2}p_{3}}^{q} + \hat{b}_{nsp_{2}p_{3}}^{q} \hat{b}_{nsp_{2}p_{3}}^{q} - 1 \right) \right| 0 \right\rangle \end{split}$$

The contributions in l_1^q are clearly divergent and need to be regularized. We will rewrite them in a more convenient form using the generalized Riemann zeta function or the Hurwitz-Riemann zeta function:

$$\zeta(z,x) = \sum_{n=0}^{\infty} \frac{1}{(x+n)^z}$$

We can rewrite I_1^q as the following:

$$\begin{split} I_{1}^{q}(B) &= -\frac{(2|Q_{q}|B)^{\frac{3}{2}}}{(2\pi)^{2}} \int_{-\infty}^{\infty} dp_{3} \sum_{n=0}^{\infty} \sqrt{\left(\frac{M^{2}+p_{3}^{2}}{2|Q_{q}|B}+n\right)} + \frac{|Q_{q}|B}{(2\pi)^{2}} \int_{-\infty}^{\infty} dp_{3} \sqrt{M^{2}+p_{3}^{2}} \\ &= -\frac{(2|Q_{q}|B)^{\frac{3}{2}}}{(2\pi)^{2}} \int_{-\infty}^{\infty} dp_{3} \, \zeta(-\frac{1}{2},\frac{M^{2}+p_{3}^{2}}{2|Q_{q}|B}) + \frac{|Q_{q}|B}{(2\pi)^{2}} \int_{-\infty}^{\infty} dp_{3} \sqrt{M^{2}+p_{3}^{2}} \, . \end{split}$$

Using the integral representation of the zeta function:

$$\int_0^\infty dy y^{z-1} \exp[-\beta y] \coth(\alpha y) = \Gamma[z] \left\{ 2^{1-z} \alpha^{-z} \zeta(z, \frac{\beta}{2\alpha}) - \beta^{-z} \right\} , \qquad (2)$$

Making the identification:

$$\alpha = |Q_q| B, \ \beta = M^2 + p_3^2, \ z = -\frac{1}{2},$$

we obtain:

$$\begin{split} I_1^q(B) &= -\frac{(2|Q_q|B)^{\frac{3}{2}}}{(2\pi)^2} \int_{-\infty}^{\infty} dp_3 \; \frac{1}{2^{3/2}(|Q_q|B)^{1/2}} \\ &\times \left\{ \frac{1}{\Gamma(-1/2)} \int_0^{\infty} dy y^{-3/2} \exp[-(M^2 + p_3^2)y] \coth(|Q_q|By) + \sqrt{M^2 + p_3^2} \right\} \\ &+ \frac{|Q_q|B}{(2\pi)^2} \int_{-\infty}^{\infty} dp_3 \sqrt{M^2 + p_3^2} \;, \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

using that $\Gamma(-1/2) = -2\pi^{1/2}$ we can rewrite the last expression as the following:

$$M_1^q(B) = \frac{|Q_q|B}{(2\pi)^2 2\pi^{1/2}} \int_{-\infty}^{\infty} dp_3 \int_0^{\infty} dy y^{-3/2} \exp[-(M^2 + p_3^2)y] \coth(|Q_q|By).$$

The p_3 integration can be easily performed:

$$\int_{-\infty}^{\infty} dp_3 \exp[-p_3^2 y] = \frac{1}{y^{1/2}} \int_{-\infty}^{\infty} dp \exp[-p^2] = \frac{\pi^{1/2}}{y^{1/2}} .$$

The final results for I_1^q is the following:

$$I_1^q(B) = \frac{|Q_q|B}{8\pi^2} \int_0^\infty dy \frac{e^{-M^2y}}{y^2} \coth(|Q_q|By) = \frac{B_q}{8\pi^2} \int_0^\infty dy \frac{e^{-M^2y}}{y^2} \coth(B_q y), B_q = |Q_q|B.$$

The integration $I_1^q(B)$ is clearly divergent and needs to be regularized.

$$\Omega_{T=0}^{(1-Loop)} \equiv N_c \sum_{f=u,d} l_1^q(B) = \frac{N_c}{8\pi^2} \sum_{f=u,d} \int_0^\infty \frac{dy}{y^3} e^{-yM^2} B_q y \coth(B_q y) \quad \leftarrow (\text{divergent if } y \to 0) \quad .$$

The origin of the divergences can be understood by using the Taylor series expansion of the function:

$$B_{q}y \coth(B_{q}y) \sim 1 + rac{(B_{q}y)^2}{3} + rac{(B_{q}y)^4}{45} + O[(B_{q}y)^6] ~,$$

 $\Rightarrow To regularize the effective potential, we need to perform two subtractions.$

1-Loop efective potential - MFIR regularization

$$\begin{split} \Omega_{T=0}^{(1-Loop)} &\equiv \frac{N_c}{8\pi^2} \sum_{q=u,d} \left\{ \underbrace{\int_0^{\infty} \frac{dy}{y^3} e^{-yM^2} \left[B_q y \coth(B_q y) - 1 - \frac{(B_q y)^2}{3} \right]}_{finite} \right. \\ &+ \underbrace{\int_0^{\infty} \frac{dy}{y^3} e^{-yM^2}}_{infinity} + \frac{B_q^2}{3} \underbrace{\int_0^{\infty} \frac{dy}{y} e^{-yM^2}}_{infinity} \right\} \\ \Omega_{T=0}^{(mag)} &= \frac{N_c}{8\pi^2} \sum_{q=u,d} \int_0^{\infty} \frac{dy}{y^3} e^{-yM^2} \left[B_q y \coth(B_q y) - 1 - \frac{(B_q y)^2}{3} \right] \\ \Omega_{T=0}^{(vac)} &= \frac{N_c}{8\pi^2} \sum_{q=u,d} \int_0^{\infty} \frac{dy}{y^3} e^{-yM^2} \rightarrow -\frac{N_c}{\pi^2} \sum_{q=u,d} \int_0^{\Lambda} p^2 \sqrt{M^2 + p^2} , \\ \Omega_{T=0}^{(field)} &= \frac{N_c}{24\pi^2} \sum_{q=u,d} B_q^2 \int_0^{\infty} \frac{dy}{y} e^{-yM^2} \rightarrow \frac{N_c}{24\pi^2} \sum_{q=u,d} B_q^2 \int_{1/\Lambda^2}^{\infty} \frac{dy}{y} e^{-yM^2} \\ &= \frac{N_c}{24\pi^2} \sum_{q=u,d} B_q^2 \Gamma \left[0, \frac{M^2}{\Lambda^2} \right] \sim -\frac{N_c}{24\pi^2} \sum_{q=u,d} B_q^2 \left[\ln \left(\frac{M^2}{\Lambda^2} \right) + \gamma_E \right] \end{split}$$

$$\Omega_{\mathcal{T}=0}^{(1-\textit{Loop})} = \Omega_{\mathcal{T}=0}^{(\textit{mag})} + \Omega_{\mathcal{T}=0}^{(\textit{vac})} + \Omega_{\mathcal{T}=0}^{(\textit{field})}$$

(S. S. Avancini, R. L. S. Farias, M. B. Pinto, T. E. Restrepo and W. Tavares, Phys. Rev. D 103, 056009 (2021)

900

Conferences in Brazil

XXII Escola de Verão Jorge André Swieca de Física Nuclear Teórica

April 28 to May 2 (2025), Niterói, RJ, Brazil

CA1: A modern description of dense matter Palestrante: Veronica Dexheimer (Kent State University, EUA)

CA2: Hot and dense QCD in colliders Palestrante: Carlos Alberto Salgado (Universidade de Santiago de Compostela, Espanha)

CA3: Effective Field Theories Palestrante: Laura Tolos (Institute of Space Sciences, Espanha)

CA4: Nuclear reactions Palestrante: Chloe Hebborn (Michigan State Uni - EUA) Support was received in part by Consejo Nacional de Humanidades, Ciencia y Tecnología (México) grant number CF-2023-G-433.

Thank you for your attention!