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General objectives

Is it true that the CEP appears at such large eB?
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ndrodi, y
Obtain the phase diagram of the strongly interacting

Calculate the free energy of the system, to study the
matter, in the plane of temperature vs intensity of the
magnetic field using the effective model, LSMq.

behavior of the order parameter of the theory, associated
with the breaking/restoration of chiral symmetry.
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Specific objectives

Calculate the quantum corrections to the free energy, that s, calculate the effective potential in
the high temperature approximation and in the presence of ultra-intense magnetic fields.

» The1-loop correction of the potential for mesons, both neutral and charged, and for
fermions.

» Ring diagrams for the case of neutral mesons.

» The self-energies of the mesons.
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LSMq
The Lagrangian of the Linear Sigma Model with quarks is given by
2 = 00 + JOAP+ (0 4 T) = S0 AR + O, PR~ giio ()
Once spontaneous breaking of chiral symmetry is allowed and working with the physical pions, we have
< :%GMaal‘a + %@ﬂroa“wo +On Oy — 1Emé(v)az - %mé(v)wé —mi(v)T_my

2
+ i@y — me(v) ) + Ly — VI

where
4 3 3 2 A o, 2 A 4
Lt = — din Avo® — Ao — Ao Ty — 2 \voTm_ Ty — PR Am_my)® — 27 + a‘vo
— AMr_mymh — igV2 (WY’ dm 4 dyum_) — igiiyumo + igdy dmo — gliuo — gddo

3)
z A
Vti’ee — _%V2+ZV4 (4)
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LSMqg with magnetic fields
We rewrite the covariant derivative with the minimal coupling
Oy — Dy = 0y —igA, (5)
Thus, the Lagrangian is
L =10,00"0 + 0, mod" e — SmE(V)o? — —m(v)m
=5 0u00a + 5 Oumodmo + D,m_Dimy — Ema(v)a - Emo(v)ﬂo

— my (V)T s A DB — mp (V)P + Ly — VI

(6)

Due to spontaneous symmetry breaking, the fields acquire masses given by

mi =3\ —a* |, mi=\*—a" | me = gv )
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Considerations

For the LSMq in the presence of an external magnetic field, the 1-loop effective potential
contains both bosonic and fermionic contributions.

V;:_i/(d4k In(D;" (k) v}:iNCQ*/%Tr[In(S?(k))I (®)

2 ) (2m)*
The propagators for each of the possible fields are as follows,

i

iGk) = 2 = ©)
e
|aB|
iGH (k) 2: £ , ISt (k) = 2ie” MB‘ kH 2 (10)

m?
—|aB| — || ””f
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1-loop corrections
©000000000

Neutral mesons

For neutral fields, (g, o), the 1-loop potential in terms of Matsubara frequencies is as

d3k 2 1
Z/ 277)3 S . 1)

w2 + k2 + m?

By summing over the Matsubara frequencies
1 Pk 1 2
Vie- | ——dm*— [14+ ——— 12
°© 7 2) (2m)?P 2wy ( = e“’k/T—1) 12)

we = \/ k2 + m?

with

We solve for each term separately .
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1-loop corrections
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Vacuum term

The vacuum term is divergent so we resort to the dimensional regularization method.
By integrating over m?

) AV i \ (13)
0,vac 2 (27T)d (EZ + m2)71/2
By integrating
m* 1 3 4 p®
Vz),vac: 6472 (i6+(ﬂi +’7E)*In < m? )> (14)

using MS to renormalize the mass

o3 (e (15)
O,vac 642 \ 2 m?
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Matter term

1, — 1 £k 2 1 1
To calculate the matter term Vo,ﬁ =3 f Gy dm T T (16)
In this case, we use the high temperature approximation to obtain

V! L LS PYRS ) My G UM B
= —— _ _— —_ — —_— n —_
08" “gxz \'as 372 ' 37 TET7) 8T (4nT)2 ) 8T

finally we have

V1:_T4W2+ﬂ_@_m’4 2’}/E+|n 'uz (18)
0 90 24 127 64m? us
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Charged mesons
In terms of the Matsubara frequencies, for charged bosons

K2

#h e IaEl
vV, =T / dmp, 19
b z”: (2m)* P w2 + kE + m? + |qB| 1)
When summing and integrating with respect to the perpendicular components of the

momentum

V! 9Bl [ dks dm? 1 1+ 2 (20)
b= b
8t J 2w iz + m2 + 98] eV Kot +1aBl/T _ 4

From here we can take two paths.
Integrating over the mass leads us to the expression

Vi L9BL ks (e 1 aB] 4+ 2T In(1 — e~ VBT )
b 4 27 3 b
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Vacuum term

Following the same procedure as for the neutral case, that is, doing dimensional regularization

. :@ ddkg /1’1_d
e am ] () (6 i+ )

(22)

and using MS, we have

|98 2 p
W = o B AR ——— 23
b,vac (471')2 (mh + |q |) +In mi T |qB| (23)

This result is the same for any of the two integration paths chosen.
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Matter term

With
Vi Pt T|qB| dks n (1 . e—./k§+mg+|q3|/r> 24)

2T 2T

To rewrite the expression we use the fact that magnetic fields are ultra-intense, i.e. |gB| >> T, because
of this we can use that
= ()
n(14+x) = X"
(1+%) Z; ;

SO
V- T|qB| dks g~ VI tmiFlain/T
b= T Z (25)

2T
n=1

by integrating

T|8| = Ki (ny/mZ + [aB[/T)
Vis = 5 \/mi + 141 Y - (26)
n=1
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We obtain the 1-loop potential for charged bosons, with the first method, as

2 2
w-lw(ﬁ+wnb+m(%i))—Wm'ﬁ+wm<wmi@g 27)

b7 (4m)? mj, + (8] 272 T

Using the high-temperature approximation, the resultis

qBT a8l > 0
Vy=——1/l4B s B) (2 I 28
b pie |aB| + mj (47T)2(’"b + [aB[) { 276+ In (@rT)? (28)
1aB} [5:\:1] 1aB| lG:\:z]
V?«(@‘B)Wth n=10,T=0.2, mj*=,0,14 \/",(qB)W\th n=10,T=0.3,;m), = 0,14
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Quarks

The 1-loop potential for fermions is

K2

[aB]

Ak e
VI = —4N T dm? 29
f Cz”: /(27r)3 mfa;,$+k§+m§ 28

Before integrate into the mass but later of the integration in de perpendicular part

1 —
f
2 27 / 2 L m?
™ k% m% . kg +mz /T ]

We can use the high temperature approximation.

V= 30)
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Vacuum term

By doing dimensional regularization, the vacuum term is as follows

fvac — 27 (271.)2 mg (I’(% + m%)1/2

1 _ NclqB| dks dm? pe

with MS

integrating over mass

Nc|qB| s
1 ¢ 2
Visae = ==, 7 M <1 +In (nq% (33)
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1-loop corrections
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Matter term
with
V1

in this case, we can use the high temperature approximation in this integral

_Nc!qB\ / (
m
(—1 + 27+ 1In (

:
Vig =
thus
1

f.6—

we have

~ NelaB|
A7 2

VAL
41

2

m (275 +1In (
T

_ Nelag| /dkgdm,% , L
B g2 \/k§ +m? e\/k§+m§/r My

(%)

2
f

T2T2

2

i
272

))

)

(34)

(35)

(36)
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Ring diagrams

With the masses of the neutral bosons, these could be negative, so, the terms as m* could be
imaginary and this is a problem, to resolve this is necessary add the corrections corresponding
to the ring diagrams, which are like

\V1ing Z / 27)3 n(1+ M,D) (38)

due to we are working with a high tempeture we can take the more dominat term wich is the
Matsubara ‘s zero mode, it is takingn = 0, so

Vring — I/ il (In (K +m” + 1) — (kK> + m*)) 39)
2 ) (2n)?
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Ring diagrams
oe
with solution

3
Vg — —L(m2 + 1,2 + Ly (40)
127 127

adding this terms the 1-loop contribution result as

‘ T4n2 272 T mt 12
Vv — — R o 3/2 0 2 |
+ 0 T 2a T aatMot )= grm (et In (arT)?

T47T2 mZTZ T m4 ,LLZ
= o (mE 42— = (29 In [
50t 2a T Ma T ) 642 < L ((47rT)2>>

/12
2 TlaB mb + |qB|

|9B| 2
—(m BI)[1+1
+27r2( o+ |aB[) {1 +1n m? + |qB| w2 T

NC|‘4 m2 Nz
_Z e 279 +In 1272

(41)
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Self-energy
Now, we have to compute the self-energies, to this we start knowing the next expresions
A
My = " [121(ms) + 41(mo) + 81(my)] + NeNcMe (42)
A
Mo = " [41(ms) +121(mg) + 81(my)] + N¢NcITg (43)
where the function I(m,) is
) = 2% ”
my) =2—>
b dm?
and the self-energy for fermions is
A%
M= 29> —~ 45
f=20 5.5 (45)
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Self-energy
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In this way we can obtain by deriving, for each self-energy

AT saryTEm 3Bl Nen (55 ) _ saelalg’n, | 2IPIA (i)

M, =—

41 41 2 2 2 46)
\/mE+|a8|
2|gB W1S. 10 ) 2 2 2

. |aB| AKo < T ) e Amd AmdIn (157‘:7272> 3veAm2 3xm% In (1671—ZTZ> 2 AT

72 87?2 1672 872 1672 3

M — 3AT/ M +m5  AT/T+ mi 3|Blg*Ne In ( ZTZ) 6e|qB|g*N, 4 2|qB|AIn ( [4B[+n7 )

° 47 72 72 2

(47)

4m
\/mz+a8| 2
2[4B|AK, <7r syt eI () e At in () ar
3

2 82 1612 82 16m?

Jr
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Feynman diagrams contribution
In a diferent way we calculate using for the bosons

, d*k AN
—iM, = / W(—ZI)\)ID(I’Q) (48)
for fermions
4
—iMf = — / %Tr [(£g7°) S (k) (£g7°) iS™M(k + q)] +C.C (49)
k +q
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neutral bosons

In terms of Matsubara frecuencies

3
—iMg = —Z:ATZ/ 4 ! (50)

w% + k% + m?
by summing
Pk 1 1 1
—illy = —Zi)\/ = AL — (51)
0 (277)3 A/ kZ + mz (2 e\/ k2+mZ/T N 1)

using the high temperature approximation we obtain

—iM L mT + Am 29 +1In " ok (52)
°“ 2 e (a7 T)? 6
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Charged bosons

With & /i

_ 1 qB
—iMy = —4i\T 53
PE=T Z/(m w2+kz+|q8|+mb ©3)

Sum over n and integrate perpendicular components
) _\|qB| dk3 1 2
—ily = —i (54)
= 2t ) 2m \JkE+ |4B| + m? MY e

rewrite as a function of a derivative of mass

B dk / T
_’rli ,Mlz |:/ 73 { k% + |qB| + mi + 2T In (-I —e k3+MB|+mb/T) }:| (55)
T dmj 2w

—fni—i“’[‘f‘ o+ o) (110 (22 ) ) = 220 m;+|q5|,<1<@ﬂ

mZ + [qB| 272 T

(56)
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Quarks

In the case of fermion self-energy, we will have two possible cases, for each of the allowed
interactions, i.e., with neutral pions and with sigma mesons.

—iMf = — / %Tr [(£g7°) IS (k) (£g7°) iS™ (k+q)] +C.C (57)
il = — / (:47’;4” [(—ig)is"t(k) (=ig)is" (k +a)] +C.C (58)

However, we prove that both results, in the high temperature approximation are equal, as

- g"lqB| 1
=il =i = <2ny +In <(T7T)2 (59)
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Results

We have
2, N, - T (W2 — )7 12
vt — 224 24 M2 7 ) (W — g Mn.)3/2 — 2 |
2Vt T 24 T (W = a) £ Te) 6472 VeI Gty
T'r2  (3Av* — a?)T? T (BAV? — a?)? u?
- — — (B =) + N, = L 2+
T 24 127 B =) 4 1) 6472 VeI Gy

+ M((>\vZ —a*)+|q,B]) {1+ In i
272 (Av2 = a?) + |q,B]

S VO —a?) +1a,8] > K (n\/(sz — )t |qu|>

s T

Nc|qu| 2.2 ,Uz
R ; amz 27 +n w272
(60)
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Conclusion

We obtained an expression for the free energy associated with LSMq, with quantum
corrections due to high temperature and ultra-intense magnetic fields.

This energy is a function of the order parameter v, the temperature T, the magnetic field gB,
and the coupling constants Aand g.

It will allow us to find a relation between temperature and magnetic field at which the chiral

symmetry breaking/restoration occurs, in order to construct a phase diagram and study the
phase transition, the kind of transition and where values we find the critical point.
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