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B [Gauss = 10-4 Tesla] Example

1-100 x 10-9 G Intergalatic magnetic field

1-100 x 10-6 G Heliosphere

10-3 G Coffeemaker ( 30 cm away)

0.3 G Earth magnetic (on equator)

10 G Refrigerator magnet

15-70 x 103 G Medical magnetic resonance

0.45 106 G Strongest continuous B produced in lab

12 – 28 x 106 G Record for human produced pulsed B 

1015 G Typical Magnetar (at surface)

1018 G Heavy Ion Collision at RHIC 

Order of magnitude of magnetic field strength



SI (aka MKS) : Unit for B is Tesla [T] Unit for Q is Coulomb[C] 

Gaussian cgs : Unit for B is Gauss [G]    Unit for Q is statCoulomb [statC (esu)] 

1 statC ≅ 3.336 × 10−10 C                              1 G = 10-4 T

Units



Natural units: Basic quantities are   c , ℏ , eV. 

The relation with the basic cgs units is 

1 s = 1.52 × 1015 ℏ eV-1 1 cm = 5.07 × 104 ℏ c eV-1 1 g = 5.61 × 1032 eV c-2

Useful conversion factors are

(e in Gaussian units) 

ℏ c =  197.33 MeV fm

e2 = 𝛼 ℏ c              where 𝛼 = 1 / 137.036 

We have that

corresponds to 

2 10 3  8.1194  10  esu G  2.70834 1GeV /   10   e C TB c    
1620 1.69 × 10  G = 1.69 × 10  TB 

The unit of  B  is  eV2 / (ℏ c)3/2 and that  of   eB is   eV2 / ℏ c

By convention when quantities are written in natural units all factors of ℏ and c are

suppressed. Then 

and

𝑒𝐵 = 𝑚𝑒
2  B = 4.41 x 1013   G           𝑒𝐵 = 𝑚𝜋

2 = (0.14 MeV)2  B = 3.31 x 1018   G



Charged particle in a constant and homogeneous B: 

Classical case

Without lost of generality we

assume 𝐵 = (0,0, B) with B > 0

Elementary physics approach

Lorentz force 𝐹𝐿 = 𝑄 Ԧ𝑣 × 𝐵 is perpendicular to Ԧ𝑣 , therefore, energy is conserved 

We first take Ԧ𝑣 perpendicular to 𝐵
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direction of 𝐵 such component

is conserved and trajectory is

helicoidal



A more sophisticated approach

According to Newton’s law we have                                            

Taking  𝐵 = (0,0, B) this implies 

The general solution of this set of equations for constant and homogenous B is 

c

B

M

Q
 where

Here, 𝑋3, 𝐴 as well as 𝑋1, 𝑋2, 𝑅 and 𝑡0 are arbitrary constants fixed by the initial

conditions (2 per each 2nd order equation). Note that 𝑋1, 𝑋2 are the coordinates of

the center and 𝑅 the radius of the circle in the 1-2 plane

Note also that that eom are invariant under translations in any direction and

rotations around the 3-axis.

equations of 

motion (eom)



An even more sophisticated approach

Let us recall that the electric field 𝐸 and the magnetic field 𝐵 can be obtained 

from the scalar potential 𝜙( Ԧ𝑥, 𝑡) and the vector potential Ԧ𝐴( Ԧ𝑥, 𝑡) according to

In terms of them, the Lagrangian of a charged particle in an electromagnetic 

field is

For the case in which only a constant magnetic field is present (i.e. 𝜙 = 0 and Ԧ𝐴
time independent)

Then the Euler-Lagrange equations given by

coincide with those shown before  when 𝐵 = (0,0, B)



It is very important to note that, given the fields 𝐸 and 𝐵, the potentials 𝜙 and Ԧ𝐴 are

not unique. In fact, we can perform the “gauge” transformations

without changing the fields 𝐸 and 𝐵.

The Lagrangian of a particle in an electromagnetic field changes by a total time

derivative (it is said it is quasi-invariant). Therefore the eom remain unchanged.

The existence of gauge transformations is a redundancy in our description of the

system: fields which differ by the above transformation describe physically identical

configurations. Nothing that we can physically measure can depend on our gauge

choice.

Turning back to the problem of particle in a constant and homogenous 𝐵, if we start

from the Lagrangian formulation we have to fix a gauge. Usual gauges for 𝐵 = (0,0, 𝐵)
are



Let us consider our problem in the LG2. The Lagrangian reads

It is easy to see that using the Euler-Lagrange

equations we recover the eom given before

We have already mentioned that the system is expected to be invariant under

translations and rotations around the 3-axis. However, the Lagrangian in the LG2 does

not seem to be invariant under translations in 𝑥1 or rotations around the 3-axis.

Let’s consider the translation 𝑥1 → 𝑥1
′ = 𝑥1 + 𝑏 acting on the LG2 Lagrangian. We have

Thus, L is quasi-invariant and leads to the same eom.

Even more interestingly, it can be seen that this translation is equivalent to the gauge

transformation

Similarly for rotations around 3-axis. Equivalent situation in other gauges.



Coming back to the Lagrangian for a charged particle in a general electromagnetic

field

we define  the canonical momenta

which satisfy the Poisson bracket relations

Clearly, 𝑝𝑖 is different from Π𝑖 = 𝑀 ሶ𝑥𝑖 which is the quantity usually called momentum. 

In the present context Π𝑖 is called mechanical momentum

{ , } ; { , } { , } 0i j ij i j i jx p x x p p  

We note that 𝑝𝑖 is not gauge invariant and, consequently, is not an observable

quantity. On the hand, Π𝑖 is gauge invariant and, thus, it is an observable quantity.

We can now define the Hamiltonian of the system



Charged particle in a constant and homogeneous B: 

Non-relativistic quantum case

We turn now to the non-relativistic quantum theory. Following the usual

quantization procedure, we replace the canonical momentum with

Then time-dependent Schrödinger equation for a particle in an electric and magnetic

field takes the form

Before returning to the particular case in which only a constant and homogeneous B

is present, it is important to note two important points:

1) Differently from the classical case, it is not possible to formulate the quantum

mechanics of particles moving in electric and magnetic fields in terms of 𝐸 and 𝐵

alone. We’re obliged to introduce the gauge fields Ԧ𝐴 and 𝜙



That 

2) Under gauge transformations the Schrödinger equation transforms covariantly

(i.e. in a nice way) only if the wavefunction itself also transforms with a position-

dependent phase

This transformation does not affect physical probabilities, which are given by |𝜓|2

The simplest way to see that the Schrödinger equation transforms “nicely” under 

the gauge transformations is to define the covariant derivatives

In terms of these covariant derivatives, the Schrödinger equation becomes

Noting that under gauge transformations (assuming 𝜓 transforms as mentioned above)

We have that the Schrödinger equation transforms, in fact,  covariantly

that transform as



Turning back to the problem of a particle in a constant and homogenous 𝐵 we have 

that
ˆ

ˆ
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Canonical commutation relations are (also valid for general EM field)

On the other hand, for the mechanical momenta we have

If we take 𝐵 = 0,0, B then

The components of 
෡Π (or velocities) perpendicular to 𝐵 are incompatible physical 

quantities 

1 1 3 22 3
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We are now in position of solving the Schrödinger equation to find the eigenvalues

and eigenfunctions associated to a charged particle moving in a constant and

homogeneous B. To do so we have to fix a gauge.

We consider first the LG2 which implies  Ԧ𝐴 = 𝐵 (0, 𝑥1, 0). Then

Because we have manifest translational invariance in the 𝑥2 and 𝑥3 directions, we

have [ Ƹ𝑝2 ,H] = [ Ƹ𝑝3 ,H] = 0 and can look for energy eigenstates that are also

eigenstates of Ƹ𝑝2 and Ƹ𝑝3. This motivates the ansatz

The time-independent Schrödinger equation is H𝜓 = E𝜓 . Substituting our ansatz

we simply replace Ƹ𝑝2 and Ƹ𝑝3 with their eigenvalues, and we have



We can write the previous equation as an eigenvalue equation for the 𝜙(𝑥1). We 

have

where  ෩𝐻 is something very familiar: it’s the Hamiltonian for a harmonic oscillator in

the 𝑥1 direction, with the centre displaced from the origin,

Something rather strange has happened in this Hamiltonian: the momentum in the

𝑥2 direction, 𝑝2, has turned into the position of the harmonic oscillator in the

𝑥1 direction, that is now centered at 𝑥1 = 𝑝2 /|QB|

We can immediately write down the energy eigenvalues E ; they are simply those 

of the harmonic oscillator in the perp plane plus a free kinetic energy in the parallel 

direction
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The wavefunctions depend on three quantum numbers: 𝑛, 𝑝2, 𝑝3 . They are

with 𝐻𝑛 is the usual Hermite polynomial wavefunctions of the harmonic oscillator

and N is some normalization factor.

The wavefunctions look like strips, extended in the 𝑥2 direction but exponentially

localized around 𝑠 𝑝2/𝐵𝑄 in the 𝑥1 direction.

However, there is large degeneracy of wavefunctions and by taking linear

combinations of these states we can cook up wavefunctions that have pretty much

any shape you like.



The dynamics of the particle in the 𝑥3-direction is unaffected by the magnetic field

B = (0, 0,B). Thus, we restrict to particles with 𝑝3 = 0. The energy spectrum then

coincides with that of a harmonic oscillator,

In the present context, these are called Landau levels. We see that, in the presence

of a magnetic field, the energy levels of a particle become equally spaced, with the

gap between each level proportional to the magnetic field B.

The states in a given Landau level are not unique. Instead, there is a huge

degeneracy, with many states having the same energy. We can see this in the form of

the wavefunctions which, when 𝑝3 = 0, depend on two quantum numbers, n and 𝑝2.

Yet, the energy is independent of 𝑝2.



We can now determine how large this degeneracy of states is. To do so, we need to 

restrict ourselves to a finite region of the  perpendicular (i.e. 𝑥1 − 𝑥2) plane. We pick 

a rectangle of area A with sides of lengths 𝐿1 and 𝐿2. We want to know how many 

states fit inside this rectangle.

Having a finite size 𝐿2 is like putting the system in a box in the 𝑥2-direction. The

wavefunctions must obey

This means that the momentum 𝑝2 is quantized in units of 2𝜋/𝐿2.

Having a finite size 𝐿1 is somewhat more subtle since the LG2 does not have

manifest translational invariance in the 𝑥1-direction. Thus, our argument will be a little

heuristic. Because the wf’s are exponentially localized around 𝑥1 = 𝑠𝑝2 /𝐵𝑄 for a

finite sample restricted to 0 ≤ 𝑥1 ≤ 𝐿1 we would expect the allowed 𝑝2 values to

range between 0 ≤ 𝑝2 ≤ 𝐵𝑄𝐿1.

Then number of states in each Landau level is given by



We now consider the same problem but using the SG,  Ԧ𝐴 =
𝐵

2
(−𝑥2, 𝑥1, 0)

This choice of gauge breaks translational symmetry in both the 𝑥1 and the 𝑥2
directions. However, it does preserve rotational symmetry around 3-axis. This

means that eigenvalue of L3 is now a good quantum number to label states.

In this gauge, the Hamiltonian is given by
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Introducing polar 𝜌 and 𝜑 coordinates in the 𝑥1 − 𝑥2 plane



We now propose

The solution of this eigenvalue equation (which is well behaved at 𝜌 = 0,∞) is

We get

2 / 2
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where  𝐿𝑙
𝑚 𝑥 are the generalized Laguerre polynomials.

The eigenvalues are



We see that the eigenvalues in the SG coincide (as expected) with those

previously obtained in the LG2.

The eigenfunctions are different. They are connected by a gauge transformation.

In fact, it can be seen that, given a Landau level (LL) one can be written as a

linear combination of the other.

Of course, it can be shown that degeneracy of the LL’s, given in this case by the

fact that E is independent of the eigenvalue of 𝐿3 (i.e. 𝑚), is the same as the one

obtained in the LG2.



Summary I

Classically, a charged particle in a constant and homogeneous B describes a

circular (or helicoidal) trajectory of fixed radius with frequency given by 𝜔𝑐=|QB|/M

The classical Lagrangian is quasi-invariant and, thus, the eom are gauge invariant.

They are also invariant under translations and rotations around the B-axis.

The canonical momenta are not gauge invariant but the mechanical momenta (and

velocities) are. Thus, the latter are observable.

To solve the quantum problem one has to fix a gauge. The eigenvalues are gauge

invariant are given by

where n indicates the corresponding Landau level (LL). Each level has a large

degeneracy.

The eigenfunctions are gauge dependent. They are connected by a gauge

transformation.
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