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Dirac equation in electromagnetic fields

The Dirac equation, considering the minimal coupling rule, in the massless case, can be written
as

γµπµΨ(x), πµ = i∂µ − Aµ, (1)

where Aµ = (Φ,A) is the electromagnetic potential of a external field. We are interested in
solved the squared operator (γ · π)2, which takes the form

(γ · π)2 = γµγνπµπν = π2 +
σµν

2
Fµν , σµν =

i

2
[γµ, γν ],

Fµν = [πµ, πν ] =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 (2)
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Dirac equation in electromagnetic fields

Developing each term separately, we obtain that

π2 = −∂2t − i
∂A0

∂t
− 2iA0∂t + A2

0 + ∂2j + i
∂Aj

∂x j
+ 2iAj∂j − A2

j ,

σµν

2
Fµν =

(
−σ3F12 + σ2F13 − σ1F23 i(σ1F01 + σ2F02 + σ3F03)
i(σ1F01 + σ2F02 + σ3F03) −σ3F12 + σ2F13 − σ1F23

)
,

(3)

where we have used the relations [γ0, γ i ] = 2αi , [γ i , γj ] = i2ϵijkσk ⊗ I2×2, Fµν = −Fνµ and
σµν = −σνµ, with the Dirac matrices being

γ0 = β =

(
1 0
0 −1

)
, γ i = βαi =

(
0 σi

−σi 0

)
,

αi =

(
0 σi
σi 0

)
, γ5 = iγ0γ1γ2γ3 =

(
0 1
1 0

)
,

(4)

and σi being the Pauli matrices.
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Parallel electromagnetic fields

Let us consider a static parallel field configuration, namely, a magnetic field B = B(x) ẑ and an
electric field E = E (z) ẑ. By taking the Landau gauge the vector potential generating B can be
chosen as A = A(x) ŷ. Moreover, since the rotational of the electric field is equal to zero, the
electric potential ϕ is a function only depending on z . Thus, the field strengths turn out to be

B(x) =
dA(x)

dx
, E (z) = −dϕ(z)

dz
. (5)

On the other hand, we assume the spinor ΨD(t, x , y , z), such that (γ · π)2ΨD(t, x , y , z) = 0,
has a standard temporal behavior and since the system exhibits translational symmetry along
the y -direction, we propose ΨD(t, x , y , z) can be written as follows

ΨD(t, x , y , z) = e i(εt+ky)Ψ(x , z) = e i(εt+ky)


ψα
↑
ψβ
↓

ψβ
↑

ψα
↓

 . (6)
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Parallel electromagnetic fields

The time-independent spinor Ψ(x , z) fulfills an eigenvalue problem that is equivalent to the
following coupled system of equations{[

∂2x − (k + A(x))2 ± dA(x)

dx

]
+
[
∂2z + (ϕ(z) + ε)2

]}
ψα,β
↑↓ ∓ i

dϕ(z)

dz
ψβ,α
↑↓ = 0. (7)

This system can be decoupled defining the variables

φ±
↑↓ ≡ ψα

↑↓ ± ψβ
↑↓. (8)

Then, the system of equations can be written as[
H−

A + H±
ϕ

]
φ±
↑ = 0,

[
H+

A + H∓
ϕ

]
φ±
↓ = 0, (9)

where

H±
A = −∂2x + (k + A(x))2 ± dA(x)

dx
, H±

ϕ = −∂2z + [i(ϕ(z) + ε)]2 ± i
dϕ(z)

dz
. (10)
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Parallel electromagnetic fields

The previous fact implying the functions φ±
↑ = χ−

↑ (x)ζ
±
↑ (z), φ±

↓ = χ+
↓ (x)ζ

∓
↓ (z) satisfy that

H±
A χ

±
↑↓ = εAχ

±
↑↓, H±

ϕ ζ
±
↑↓ = εϕζ

±
↑↓. (11)

Hence, we obtain a relation between the energies εA and εϕ, given by

εA = −εϕ. (12)

The SUSY transformations are carried out by means of the superpotentials

wA = k + A(x), wϕ = i(ε+ ϕ(z)). (13)
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Confining case: Pöschl-Teller-like potentials

Let us consider the electromagnetic potentials of the form

A(x) =
B0

ν
sec(νx), −π

2
< νx <

π

2
; ϕ(z) =

E0

µ
sech(µz), (14)

With the definitions above, the SUSY partner potentials are

V±
A (x) = k2 + 2kDA sec(νx) + D2

A sec
2(νx)± νDA sec(νx) tan(νx),

V±
ϕ (z) = −ε2 − 2εDϕsech(µz)− D2

ϕsech
2(µz)∓ iµDϕsech(µz) tanh(µz),

(15)

where DA = B0/ν, Dϕ = E0/µ. In order to solve the eigenvalue equation of the Hamiltonians
H±

ϕ , we apply the change of variable u = i sinh(µz), it is obtained that[
µ2(1− u2)

d2

du2
− µ2u

d

du
− ε2 − 2

εDϕ√
1− u2

−
D2

ϕ

1− u2
∓ µDϕ

u

1− u2
− εϕ

]
ζ±(u) = 0. (16)

This differential equation leads us to the Jacobi equation, if first we take ε = 0.
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Confining case: Pöschl-Teller-like potentials
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Figure: A sketch of the alignment of the fields in the plane X − Z (a). The electromagnetic fields generated by the potentials in Eq. (14) (b). The scale of the graphs is set by
parameters E0 = 2.0, B0 = 1.0, µ = 1.0 and ν = 1.0.
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Confining case: Pöschl-Teller-like potentials
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Figure: Plot of the Pöschl-Teller-like SUSY partner potentials V
±
A

(x) (left). Real and imaginary parts of the potentials V
±
ϕ

(z) (right). The scale of the graphs is set by

parameters E0 = 2.0, B0 = 1.0, µ = 1.0, ν = 1.0 and ε = k = 0.
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Confining case: Pöschl-Teller-like potentials

The eigenfunctions of the Hamiltonians H±
ϕ are given by

ζ±n (u) = (1− u)
1
4 (1−r±)(1 + u)

1
4 (1−r∓)P

(− 1
2 r±,− 1

2 r∓)
n (u),

εϕ = −µ2

[
n(n − Qϕ + 1) +

(1− Qϕ)
2

4

]
, r± =

√
1 + 4Sϕ(Sϕ ± 1),

(17)

where Sϕ = Dϕ/µ, Qϕ =

√
1+4Sϕ(Sϕ+1)+

√
1+4Sϕ(Sϕ−1)

2 , |Sϕ| > 1 and Qϕ − 1 ≥ n. While, the

solutions of the Hamiltonians H±
A , when k = 0, can be written as follows

χ±
n (u) = (1− u)

1
4 (1+s±)(1 + u)

1
4 (1+s∓)P

( 1
2 s±, 12 s∓)

n (u),

εA = ν2
[
n(n + QA + 1) +

(1 + QA)
2

4

]
, s± =

√
1 + 4SA(SA ± 1),

(18)

with u = sin(νx), SA = DA/ν, QA =

√
1+4SA(SA+1)+

√
1+4SA(SA−1)

2 and SA(SA ± 1) > −1/4.
The relation between the energies leads us to |ν(QA + 1 + 2m)| = |µ(Qϕ − 1− 2n)|.
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Probability and current densities
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Probability and current densities
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Probability and current densities
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Probability and current densities
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Probability and current densities
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Summary and outlook

▶ The (3+1) Dirac equation describing a Dirac material in the presence of static
non-uniform parallel electromagnetic fields is solved within a SUSY-QM framework.

▶ The current densities vanish in all spatial directions, except for the current along the
y -direction, which defines a plane in which it lies perpendicularly to the electromagnetic
fields. Hence, it is appropriate to assume that a PHE develops in the system dealt here.

▶ ¡The Dirac material addressed here shows a new class of chiral PHE!

▶ The electromagnetic profiles used in this work are tough to realize in the laboratory.
Nevertheless, a configuration of pseudo-electromagnetic fields, associated to strains in the
material, could become analogous to the system worked here. Such configuration could be
feasible in the laboratory through modern strain techniques in Dirac materials, such as
scanning tunneling spectroscopy

▶ Solving the SUSY partner potentials V±
ϕ (z), V±

A (x) for ε ̸= 0 is an interesting work for
the future.
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