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SUSY-QM

In the SUSY-QM framework, we have two Schrödinger-like hamiltonians:

H± = − d2

dx2
+ V±(x), (1)

and they are intertwined through the operational relation

H+L− = L−H−, (2)

where the operator L− is known as intertwining operator and it is given by

L− =
d

dx
+ w(x), (3)

with w(x) being a real function called superpotential.
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SUSY-QM

Substituting Eqs. (1) and (3) into the intertwining relation (2), we arrive at the following
system of equations1

V+(x) = V−(x) + 2w ′(x), (4)

w(x)V+(x)− w ′′(x) = w(x)V−(x) + (V−(x))′. (5)

If we introduce Eq. (4) into Eq. (5), we have that

2w(x)w ′(x)− w ′′(x) = (V−(x))′. (6)

Integrating, we onbtain that
w2(x)− w ′(x) = V−(x)− ϵ, (7)

where ϵ is a constant called factorization energy. The previous equation is a particular case of
the Ricatti equation.

1w′(x) ≡ dw(x)/dx .
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SUSY-QM

If we porpose that

w(x) = −u′(x)

u(x)
, (8)

substituting into Eq. (7), it turns out to be that

− u′′(x) + V−(x)u(x) = ϵu(x), (9)

i.e., the function u(x), called seed solution, is an eigenfunction of the Schrödinger equation for
the Hamiltonian H−, associated to the eigenvalue ϵ.
On the other hand, the Hamiltonians H± are factorized as follows

L+L− = H− − ϵ, L−L+ = H+ − ϵ, (10)

with L+ = (L−)†.
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SUSY-QM

If we know the solutions of the Hamiltonian H−, i.e., their eigenfunctions ψ−
n (x) and their

eigenvalues En, n = 0, 1, 2, ... Then, from Eqs. (2) y (10), we have that

ψ+
n (x) =

L−ψ−
n (x)√

En − ϵ
, ψ−

n (x) =
L+ψ+

n (x)√
En − ϵ

, (11)

where ψ+
n (x) is a eigenfucntion of H+ with eigenvalue En. However, the spectra of H− and H+

are not necessarily the same. Since H−u(x)− ϵu = 0, given the Eq. (10), the seed solution lies
in the kernel of the operator L−, using the Eq. (3), we arrive at

du(x)

dx
+ w(x)u(x) = 0 ⇒ u(x) ∝ e−

∫
w(y)dy . (12)

Depending on the square-integrability of the seed solution u(x), the factorization energy can
belong to the spectrum of H−. Thus, defining two kinds of supersymmetric transformations,
isospectral (broken) and non-isospectral (unbroken).
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SUSY-QM

The eigenfunction ψ+
ϵ (x) of H

+ associated to the eigenvalue ϵ is given by

ψ+
ϵ (x) ∝ e

∫
w(y)dy =

1

u(x)
. (13)

Thus the seed solution u(x) must be a nodeless function. Moreover, if we caculate the
expedtation value for the operator L+L− given in the Eq. (10), onto a eigenfucntion ψ−

n (x), we
obtain that

0 ≤ |L−ψ−
n (x)|2 = En − ϵ⇒ E0 ≥ ϵ. (14)
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Supersymmetric Algebra

The Supersymmetric Algebra is defined by means of the operators Q± called supercharges and
the supersymmetric Hamiltonian HSS , which follow the commutation rules

{Q+,Q−} = HSS , [Q±,HSS ] = 0. (15)

For the fisrt-order SUSY-QM, we have that

Q+ =

(
0 L+

0 0

)
, Q− =

(
0 0
L− 0

)
, (16)

thus, the supersymmteric Hamiltonian turns out to be

HSS =

(
L+L− 0
0 L−L+

)
=

(
H− − ϵ 0

0 H+ − ϵ

)
(17)
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Álgebra Supersimétrica

Since the intertwining operators L± are hermitian conjugates, the spectrum of HSS is
non-negative and the ground state is have a corresponding eigenfucntion Ψ0(x), which has the
following form

Ψ0(x) =

(
u(x)
ψ+
ϵ (x)

)
. (18)

If neither u(x) nor ψ+
ϵ (x) are square-integrable, the energy eigenvalue of the zero mode does

not belong to the spectrum of HSS , when this happen we have the case of broken SUSY, i.e. an
isospectral transformation. In the opposite case, if one of the function u(x) or ψ+

ϵ is
square-integrable, the energy eigenvalue of the zero mode belong to the spectrum of HSS and
we have that SUSY is unbronken, corresponding to the case of a non-isospectral transformation.
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Harmonic Oscillator Solutions

Let us consider a harmonic oscillator potential V−(x) = x2. Its solutions are well-known and
they are given by

ψ−
n (x) = cne

− x2

2 Hn(x), En = 2n + 1, n = 0, 1, 2, ..., (19)

where Hn(x) are the Hermite polynomials and cn is the corresponding normalization constant.
Moreover, in general, the solutions for the eigenvalue problem of H− are

u(x) = e−
x2

2

[
1F1

(
1− ε

4
,
1

2
; x2

)
+ 2xλ

Γ
(
3−ε
4

)
Γ
(
1−ε
4

) 1F1

(
3− ε

4
,
3

2
; x2

)]
, (20)

with 1F1(a, b; x) being the confluent hypergeometric function, ε is the corresponding energy
eigenvalue and λ is a constant such that for |λ| ≤ 1 and ε ≤ 1 the function u(x) is nodeless.
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Unbroken SUSY

Taking the ground state eigenfunction of the harmonic oscillator as seed solution,
u(x) = ψ−

0 (x) = c0e
−x2/2, and thus, the factorization energy is ϵ = 1. From Eq. (8), the

superpotential is
w(x) = x . (21)

Substituting Eqs. (7) and (4), we have that the SUSY partner potentials are

V−(x) = x2, V+(x) = x2 + 2. (22)

These potentials are known as shape-invariant potentials. Furtnermore, the solutions of these
potentials are such that ψ−

n (x) = ψ+
n−1(x), n = 1, 2, 3, ...
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Non-isospectral Transformation

Figura: (Left) Shape-invariant potentials. (Right) The superpotential, the seed function and the function ψ+
ϵ (x) with energy ϵ = 1.
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Isospectral Transformation

Figura: (Left) Non-shape-invariant potentials. (Right) The corresponding superpotential, the seed function and the function ψ+
ϵ (x) with energy ϵ = 0 and λ = 1.
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Effective Hamiltonian

The charge carriers behave as massless Dirac particles. This behavior is described by the
effective Hamiltonian:

H = vF (σ · p), (23)

where vF ≈ c/300 is the Fermi velocity, σ = (σx , σy ) are the Pauli matrices and
p = −iℏ(∂x , ∂y ) is the quantum momentum operator.
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Figura: (Left) A skecth of the graphene. (Right) The energy band structure of graphene.
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The Dirac-Weyl Equation

Then, the DIrac-Weyl Equation is:

vF (σ · p)Ψ(t, x , y) = iℏ
∂Ψ(t, x , y)

∂t
, (24)

with Ψ(t, x , y) is a two-component spinor. We suppose that our system evolve in a standard
way, i.e.,

Ψ(t, x , y) = e−i Eℏ tψ(x , y), (25)

the stationary Dirac-Weyl Equation can be written as

vF (σ · p)ψ(x , y) = Eψ(x , y). (26)
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Dirac-Weyl Equation in a magnetic field

Let us consider a magnetic field perpendicular to the graphene surface B = (0, 0,B(x)). In the
Landau gauge, the vector potential that generates this magnetic field can be chosen such that

A = (0,A(x), 0), B(x) =
dA(x)

dx
. (27)

Using the minimal coupling rule, p → p+ e
cA, with (−e) being the charge of the electron.

Thus, the stationary Dirac-Weyl Euqation is given by[
pxσx +

(
py +

e

c
A(x)

)
σy

]
ψ(x , y) =

E

vF
ψ(x , y) (28)
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The equivalent problem

The system have translational symmetry in the y -direction, thus, we can propose the spinor
ψ(x , y) has the following form

ψ(x , y) = e iky
(
ψ+(x)
iψ−(x)

)
. (29)

Substituting the Eq. (26), we arrive at the system of equations[
d

dx
+ k +

e

cℏ
A(x)

]
ψ−(x) = εψ+(x), (30)[

− d

dx
+ k +

e

cℏ
A(x)

]
ψ+(x) = εψ−(x), (31)

where ε = E/vFℏ.
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Decoupled System

We can decouple the system of equations (30) and (31), we have that[
− d2

dx2
+

(
k +

eA(x)

cℏ

)2

+
e

cℏ
dA(x)

dx

]
ψ+ = ε2ψ+(x), (32)[

− d2

dx2
+

(
k +

eA(x)

cℏ

)2

− e

cℏ
dA(x)

dx

]
ψ− = ε2ψ−(x). (33)

We can associated these operators to two Schrödinger-like Hamiltonians H± with potentials

V±(x) =

(
k +

eA(x)

cℏ

)2

± e

cℏ
dA(x)

dx
(34)
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The SUSY transformation

Comparing with the solutions of the previous solutions, we can observe that the Hamiltonians
H± are SUSY partners, while the intertwining operators are

L± = ∓ d

dx
+ w(x), w(x) = k +

eA(x)

cℏ
. (35)

From the Eq. (34), we can take the factorization energy ϵ = 0. And, from Eq. (14) it follows
that the Hamiltonians H± are positives, thus, the seed solution (if it is square-integrable) is the
ground state eigenfucntion of H−.
Moreover, taking the derivative of the superpotential, we arrive at

B(x) =
dw(x)

dx
=

e

cℏ
dA(x)

dx
. (36)
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Dirac-Weyl Equation solutions

If the Hamiltonians H± have solutions, with eigenfunctions ψ±
n (x) and eigenvalues εn, the

spinor ψ(x , y) satisfying the Dirac-Weyl Eq. (26) has the following form

ψn(x , y) = e iky
(
ψ+
n−1(x)
iψ−

n (x)

)
, En = ℏvF

√
εn, n = 1, 2, 3, ... (37)

In particular, the zero-mode turns out to be

ψ0(x , y) = e iky
(

0
ψ−
0 (x)

)
, E0 = 0. (38)
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Constant magnetic field

Taking a constant magnetic field:

B = (0, 0,B0) ⇒ A = (0,B0x , 0). (39)

Using the Eq. (35), we have the superpotential is

w(x) = k +
eB0

cℏ
x . (40)

And substituting into the Eq. (34), the SUSY partner potentials are

V±(x) =
ω2

4

(
x +

2k

ω

)2

± ω

2
, (41)

where ω = 2B0/cℏ.
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Constant magnetic field

The eigenfunctions are given in terms of the Hermite polynomials:

ψ±
n (x) = cne

ω
4 (x+

2k
ω )

2

H
(√

ω

2

(
x +

2k

ω

))
, εn = ωn, n = 0, 1, 2, ... (42)

Figura: (Left) Shape-invariant potentials for a constant magnetic field. (Right) Energies for the Dirac electron. The parameter values taken are ω = k = 1. Picture taken of2.

2Ş. Kuru/J. Negro y L. M. Nieto: Exact analytic solutions for a Dirac electron moving in graphene under magnetic fields, en: J. Phys.: Condens. Matter 21 (2009), pág. 455305.
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Trigonomtric singular well

In this case, we consider a magnetic field of the form

B = (0, 0,B0csc
2µx) ⇒ A =

(
0,−B0

µ
cotµx , 0

)
, 0 ≤ µx ≤ π. (43)

The corresponding superpotential is

w(x) = k − D cotµx , D =
eB0

µcℏ
. (44)

While the SUSY partner potentials tun out to be

V±(x) = k2 − D2 + D(D ± µ)csc2µx − 2kD cotµx . (45)
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Trigonometric singular well

The eigenfunctions are in terms of the pseudo-Jacobi polynomials:

ψ±
n (z) = (z2−1)−(s±+n)/2ea±µxP(−s±−n+ia±,−s±−n−ia±)

n (z), εn = k2−D2+(D+nµ)2− k2D2

(D + nµ)2
,

(46)
where s− = D/µ, s+ = S− + 1, a− = −kD/µ(D + nµ), a+ = −kD/µ(D + nµ+ µ),
z(x) = i cotµx and n = 0, 1, 2, ...
The square-integrable conditions of the eigenfunctions limit the parameter range, in other
words, D, µ > 0.
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Trigonometric singular well

Figura: (Left) Shape-invariant potentials for the trigonometric singular well. (Right) Energies for the Dirac electron. The parameter values taken are D = 4, µ = 1, k = −2.

Picture taken of3.

3Kuru/Negro y Nieto: Exact analytic solutions for a Dirac electron moving in graphene under magnetic fields (ver n. 2).
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Exponential decaying field

As last example, let us take an exponential decaying field:

B = (0, 0,B0e
−µx) ⇒ A =

(
0,−B0

µ
e−µx , 0

)
. (47)

The corresponding superpotential:

w(x) = k − De−µx , D =
eB0

µcℏ
. (48)

Thus, the SUSY partner potential are

V±(x) = k2 + D2e−2µx − 2D
(
k ∓ µ

2

)
e−µx . (49)
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Exponential decaying field

The eigenfunctions are given in terms of the associated Laguerre polynomials:

ψ±
n (x) = z s±−ne−z/2L2(s±−n)

n (z), εn = k2 − (k − nµ)2, (50)

with s− = k/µ, s+ = s− − 1 y z(x) = (2D/µ)e−µx . In this case, the square-integrable
conditions limit the parameter values D, k , µ > 0 and the number of bound states by means of
the following inequality k > µn.

Figura: (Left) Shape-invariant potentials for the exponential decaying field. (Right) Energies for the Dirac electron. The parameter values taken are D = 1, µ = 1, k = 6. Picture

taken of4.

4Kuru/Negro y Nieto: Exact analytic solutions for a Dirac electron moving in graphene under magnetic fields (ver n. 2).
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SUSY-QM and complex superpotentials

If we have intertwining superpotentials with complex superpotentials, i.e.,

L± = ∓ d

dx
+ w(x), w(x) ∈ C. (51)

In this case, the operator L+ is not the hermitian conjugate of L−. thus, both hamiltonians H±

are not hermitian, and in general their eigenvalues εn will be complex.

However, ¡the supersymmetric algorithm works similar
to the real case!
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Graphene in complex magnetic fields

Let us consider a magnetic field perpendicular to the graphene surface of the form

B = B(x) ẑ, B(x) ∈ C. (52)

In the Landau Gauge, the vector potential that generates B can be written as

A = A(x) ŷ, B(x) =
dA(x)

dx
. (53)

And, using the minimal coupling rule, we can obtain a similar system of equations[
d

dx
+ k +

e

cℏ
A(x)

]
ψ−(x) = εψ+(x), (54)[

− d

dx
+ k +

e

cℏ
A(x)

]
ψ+(x) = εψ−(x). (55)
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Constant magnetic field

Our first example is a constant magnetic field B = B ẑ,B ∈ C. In the Landau gauge A = Bx ŷ
and the superpotential turns out to be

w(x) = k +
ω

2
x , ω =

2eB

cℏ
. (56)

While the SUSY partner potentials are

V±(x) =
ω2

4

(
x +

2k

ω

)2

± ω

2
. (57)

Their corresponding eigenfunctions and eigenvalues are given by

ψ±
n (x) =

{
cne

− ζ2

2 H(ζ), −π
2 < θ < π

2 ,

cne
− ξ2

2 H(ξ), π
2 < θ < 3π

2 ,
εn = nω, (58)

where ζ =
√
ω/2(x + 2k/ω), ξ =

√
−ω/2(x − 2k/ω) and ω = |ω|e iθ.

30 / 42



Constant magnetic field

Figura: Real part (a) and imaginary part (b) of the potentials V±(x), in the case of constant magnetic field with |ω| = k = 1 and θ = π/10.
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Constant magnetic field

Figura: (a) First energy eigenvalues in the complex plane for a constant magnetic field. (b) Real and imaginary part of the first energy eigenvaluesas function of k for |ω| = 1 y
θ = π/10.
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Trigonometric singular well

Now, let us consider a magnetic field of the form B = Bcsc2µx ẑ,B ∈ C, µ ∈ R+. Then, the
vector potential is A = −B/µ cotµx ŷ, and the superpotential is

w(x) = k − D cotµx , D =
eB

µcℏ
. (59)

The SUSY partener potential turns out to be

V±(x) = D(D ± µ)csc2µx − 2Dk cotµx + k2 − D2, (60)

whose solutions are given by

ψ±(ζ) = cn(−1)−(s±+n)/2(1 + ζ2)−(s±+n)/2er±arccot(ζ)P(−s±−n−ir±,−s±−n+ir±)
n (iζ),

εn = k2 − D2 + (D + nµ)2 − k2D2

(D + nµ)2
, −π

2
< θ <

π

2
,

(61)

with s− = D/µ, s+ = s− + 1, r− = −kD/µ(D + nµ), r+ = −kD/µ(D + nµ+ µ), D = |D|e iθ
and ζ = cotµx .
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Trigonometric singular well
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Figura: Real part (a) and imaginary part (b) of the potentials V±(x) in the case of a trigonometric singular well with |D| = 4, k = −2, θ = π/10 and µ = 1.
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Trigonometric singular well

Figura: (a) First energy eigenvalues in the complex plane for the trigonometric singular well. (b) Real and imaginary part of the first energy eigenvalues as functions of k for
|D| = 4, k = −2, µ = 1 and θ = π/10.
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Exponenetial decaying field

Our last example is an exponential decaying field B = Be−µx ẑ,B ∈ C, µ ∈ R+. The
corresponding vector potential is A = −B/µe−µx ŷ. Thus, the superpotential is given by

w(x) = k − De−µx , D =
eB

µcℏ
. (62)

While the SUSY partner potentials are

V±(x) = k2 + D2e−2µx − 2D
(
k ± µ

2

)
e−µx , (63)

whose solutions are

ψ±
n (ζ) = cnζ

s±−ne−
ζ
2 L2(s±−n)

n (ζ), εn = k2 − (k − nµ)2, (64)

where s− = k/µ, s+ = s− − 1, D = |D|e iθ, −π/2 < θ < π/2 and ζ = 2D/µe−µx , k > nµ.
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Exponential decaying field

0

20

40

Re
(V

)

3 2 1 0 1 2
x

0

20

40

Im
(V

)
V0
V1
eB/c

Figura: Real part (a) and imaginary part (b) of the potentials V±(x) in the case of the exponenetial decaying field with |D| = 1, k = 6, θ = π/10 and µ = 1.
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Exponenetial decaying field

Figura: (a) First energy eigenvalues in the complex plane for the exponential decaying field. (b) Real and imaginary part of the first energy eigenvalues as functions of k for
k = 6, µ = 1.
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A possible physical interpretation

The total probability density of a bound state of the effective Hamiltonian of the graphene in
the presence of a complex magnetic field evolves as follows

PT (t) = ⟨ψn(t)|Ψn(t)⟩ = e2
Im[En ]

ℏ ⟨Ψn(0)|Ψn(0)⟩. (65)

For the case of a constant magnetic field, if the argument θ ≪ 1, the imaginary part of the
energy eigenvalue is approximately θ/2, and the maximum time for which the probability
density is conserved is limit by

T ≪ 1

VF θ
√
|ω|n

, (66)

for the first exited state and a magnetic strength of 5 T and θ = π/36, T ≪ 95 fs.
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In summary

▶ The supersymmetric transformation is a useful tool to find the solutions to the effective
Hamiltonian describing the graphene monolayer under the presence of a magnetic field
perpendicular to it.

▶ It is also possible to find the solutions for the case of complex magnetic field profiles,
which makes the effective Hamiltonian of the monolayer non-hermitian. However, this
system decays rapidly to the real case if we consider that the argument of the field
amplitude is small.

▶ The use of SUSY-QM to solve Dirac-like equations describing 2D materials still has a long
way to go. We have worked Dirac materials in (3 + 1)-dimensions and determined their
zero energy mode, see5. We are currently working on graphene under uniaxial stresses and
have found that there are a finite number of Landau levels.

5Julio Cesar Pérez-Pedraza/Juan D. Garćıa-Muñoz y A. Raya: Dirac materials in parallel non-uniform electromagnetic fields generated by SUSY: A new class of chiral Planar
Hall Effect?, 2023.
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non-uniform electromagnetic fields generated by SUSY: A new class of chiral Planar Hall
Effect?, 2023.

41 / 42

https://aip.scitation.org/doi/abs/10.1063/1.1853203
https://doi.org/10.1140/epjp/s13360-022-03221-5
https://doi.org/10.1140/epjp/i2017-11323-2


42 / 42


	Supersimetric Quantum Mechanics (SUSY-QM)
	First-order SUSY-QM
	Supersymmetric Algebra
	SUSY parteners of the Harmonic Oscillator

	Graphene in magnetic fields
	Effective Hamiltonian
	Dirac-Weyl Equation in a magnetic field
	SUSY-QM and the Dirac-Weyl Eqaution solutions
	Solvable cases

	Graphene in complex magnetic fields
	SUSY-QM and complex superpotentials
	Graphene in complex magnetic fields
	Solvable cases
	A brief discussion

	In summary
	Referencias

