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SUSY-QM

In the SUSY-QM framework, we have two Schrodinger-like hamiltonians:

+ d2 +
H :7ﬁ+v (X),

and they are intertwined through the operational relation
H L= =L"H,
where the operator L™ is known as intertwining operator and it is given by

L= = dix + w(x),

with w(x) being a real function called superpotential.
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SUSY-QM

Substituting Egs. (1) and (3) into the intertwining relation (2), we arrive at the following
system of equations?

VHx) = V= (x) + 2w/(x), (4)
w()VT(x) = w"(x) = w(x)V™(x) + (V7 (x))" (5)

If we introduce Eq. (4) into Eq. (5), we have that
2w (x) — w'(x) = (V- (x))" (6)

Integrating, we onbtain that
wA(x) — w'(x) = V" (x) — €, (7)

where € is a constant called factorization energy. The previous equation is a particular case of
the Ricatti equation.

1 w!(x) = dw(x)/dx.
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SUSY-QM

If we porpose that

w(x) = — u'(x)
()= -2 ®)
substituting into Eq. (7), it turns out to be that
—u"(x) + V™ (x)u(x) = eu(x), (9)

i.e., the function u(x), called seed solution, is an eigenfunction of the Schrédinger equation for
the Hamiltonian H™, associated to the eigenvalue €.
On the other hand, the Hamiltonians HE are factorized as follows

LfL-=H —e L Lt=H"—¢ (10)

with [+ = (L),
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SUSY-QM

If we know the solutions of the Hamiltonian H~, i.e., their eigenfunctions ¢, (x) and their
eigenvalues E,, n=0,1,2,... Then, from Egs. (2) y (10), we have that

N A €3 NN R r €9
n(X)_ﬁ7 ¥, (x) = VE <’ (11)

where ¥ (x) is a eigenfucntion of HT with eigenvalue E,. However, the spectra of H~ and H™
are not necessarily the same. Since H™ u(x) — eu = 0, given the Eq. (10), the seed solution lies
in the kernel of the operator L~, using the Eq. (3), we arrive at

du(x)

o T w(x)u(x) =0 = u(x) oc e” /W), (12)

Depending on the square-integrability of the seed solution u(x), the factorization energy can
belong to the spectrum of H~. Thus, defining two kinds of supersymmetric transformations,
isospectral (broken) and non-isospectral (unbroken).
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SUSY-QM

The eigenfunction ¥ (x) of HT associated to the eigenvalue € is given by

1
+ Swiydy — > 13
vl e 0 (13)
Thus the seed solution u(x) must be a nodeless function. Moreover, if we caculate the
expedtation value for the operator LY L~ given in the Eq. (10), onto a eigenfucntion ¢, (x), we
obtain that
0<|L o, (X)P=E,—e= Ey > e (14)
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Supersymmetric Algebra

The Supersymmetric Algebra is defined by means of the operators Q* called supercharges and
the supersymmetric Hamiltonian Hss, which follow the commutation rules

{Q7,Q7} =Hss, [QF, Hss] =0. (15)
For the fisrt-order SUSY-QM, we have that
0 L* 0 O
+ _ - _

thus, the supersymmteric Hamiltonian turns out to be

1YL= 0 H-—c 0
H55:< 0 LL+>:< 0 H+—e> (17)
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Algebra Supersimétrica

Since the intertwining operators LT are hermitian conjugates, the spectrum of Hss is
non-negative and the ground state is have a corresponding eigenfucntion Wo(x), which has the

following form
_ ([ ux)
Yol = («/)i(x)> | e

If neither u(x) nor ¢ (x) are square-integrable, the energy eigenvalue of the zero mode does
not belong to the spectrum of Hss, when this happen we have the case of broken SUSY, i.e. an
isospectral transformation. In the opposite case, if one of the function u(x) or ¢} is
square-integrable, the energy eigenvalue of the zero mode belong to the spectrum of Hss and
we have that SUSY is unbronken, corresponding to the case of a non-isospectral transformation.
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Harmonic Oscillator Solutions

Let us consider a harmonic oscillator potential V= (x) = x?. Its solutions are well-known and
they are given by

x2
v (x) =che” THa(x), E,=2n+1, n=0,1,2,.., (19)

where H,(x) are the Hermite polynomials and ¢, is the corresponding normalization constant.
Moreover, in general, the solutions for the eigenvalue problem of H™ are

2 1-¢1 r7) 3-¢3
u(x)=e"2 |:lF1 (4,2;X2>+2X)\r(1:_6) 1F1< 7 ,2;)(2) ) (20)

with 1 F1(a, b; x) being the confluent hypergeometric function, ¢ is the corresponding energy
eigenvalue and A is a constant such that for |[A| < 1 and € < 1 the function u(x) is nodeless.
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Unbroken SUSY

Taking the ground state eigenfunction of the harmonic oscillator as seed solution,
u(x) =g (x) = coe™*"/2, and thus, the factorization energy is ¢ = 1. From Eq. (8), the
superpotential is

w(x) = x. (21)

Substituting Egs. (7) and (4), we have that the SUSY partner potentials are
V- (x)=x%, VT (x)=x*+2. (22)

These potentials are known as shape-invariant potentials. Furtnermore, the solutions of these
potentials are such that ¥, (x) = ¥} ;(x), n=1,2,3, ...
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Non-isospectral Transformation
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Figura: (Left) Shape-invariant potentials. (Right) The superpotential, the seed function and the function 1p€+(x) with energy € = 1.
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Isospectral Transformation
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Figura: (Left) Non-shape-invariant potentials. (Right) The corresponding superpotential, the seed function and the function 1" (x) with energy ¢ = 0 and X = 1.
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Effective Hamiltonian

The charge carriers behave as massless Dirac particles. This behavior is described by the
effective Hamiltonian:

H = ve(o - p), (23)
where vr ~ ¢/300 is the Fermi velocity, o = (o4, 0,) are the Pauli matrices and
p = —ih(0x, 0y) is the quantum momentum operator.

5

Figura: (Left) A skecth of the graphene. (Right) The energy band structure of graphene.
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The Dirac-Weyl Equation

Then, the Dlrac-Weyl Equation is:

oV(t,x,y)

ot ’ (24)

ve(o - p)V(t,x,y) =ih

with W(t,x, y) is a two-component spinor. We suppose that our system evolve in a standard
way, i.e.,

W(t,x,y) = e T ip(x, y), (25)

the stationary Dirac-Weyl Equation can be written as

VF(”'PW(’GY) = E¢(XaY)~ (26)
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Dirac-Weyl Equation in a magnetic field

Let us consider a magnetic field perpendicular to the graphene surface B = (0,0, B(x)). In the
Landau gauge, the vector potential that generates this magnetic field can be chosen such that

A= (0,A(x),0), B(x)= %E{X). (27)

Using the minimal coupling rule, p — p + A, with (—e) being the charge of the electron.
Thus, the stationary Dirac-Weyl Eugation is given by

s+ (py + SAX)) oy zb(x,y):ﬁw(x,y) (28)
P+ (py + AR o .
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The equivalent problem

The system have translational symmetry in the y-direction, thus, we can propose the spinor
1¥(x,y) has the following form

_ +
Y(x,y) = e (’1;[2(();))> . (29)
Substituting the Eq. (26), we arrive at the system of equations
d e _
Sk AR () = 0 ) (30)
d
gk A 0100 =), (31)

where ¢ = E/vh.
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Decoupled System

We can decouple the system of equations (30) and (31), we have that

2 eA(x 2 e X

l;xﬁ(k " A(h)> +didi‘1§<)]w+=€2¢+(x)v (32)
2 eA(x 2 e X

Hl2+(k+ ) ‘md/j/(x)]¢ Sy )

We can associated these operators to two Schrodinger-like Hamiltonians H* with potentials

VE(x) = <k+ EA(hX)> i%—dgix) (34)

18/42



The SUSY transformation

Comparing with the solutions of the previous solutions, we can observe that the Hamiltonians
H* are SUSY partners, while the intertwining operators are

L* = :Fix +w(x), w(x)=k+ eA(X). (35)

d ch
From the Eq. (34), we can take the factorization energy e = 0. And, from Eq. (14) it follows
that the Hamiltonians H* are positives, thus, the seed solution (if it is square-integrable) is the
ground state eigenfucntion of H™.
Moreover, taking the derivative of the superpotential, we arrive at

_dw(x) e dA(x)
B = dx  ch dx (36)
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Dirac-Weyl Equation solutions

If the Hamiltonians H* have solutions, with eigenfunctions ¥ (x) and eigenvalues ¢, the
spinor ¢(x, y) satisfying the Dirac-Weyl Eq. (26) has the following form

. + (x
bn(x,y) = e (1?1'2);1(()())) . En=hveyE,, n=123,.. (37)

In particular, the zero-mode turns out to be

TZJO(XMV) = eiky (1/10_()(X)> ) EO =0. (38)
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Constant magnetic field

Taking a constant magnetic field:
B = (0,0, Bo) = A= (0, B()X,O).

Using the Eq. (35), we have the superpotential is

where w = 2By /ch.
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Constant magnetic field

The eigenfunctions are given in terms of the Hermite polynomials:

PE(x) = cref(HE) % x+—=)) en=wn n= 0,1,2,... (42)

E..u(k)
V(6. Valx), eBlx)ich 25
Y i
Y 2

K K

Y i
N I 150

", ¥
S /’ 1+
. .
0.5F
. .
= T*
=2 =1 1 2 k

Figura: (Left) Shape-invariant potentials for a constant magnetic field. (Right) Energies for the Dirac electron. The parameter values taken are w = k = 1. Picture taken of2.

2S. Kuru/J. Negro y L. M. Nieto: Exact analytic solutions for a Dirac electron moving in graphene under magnetic fields, en: J. Phys.: Condens. Matter 21 (2009), pag. 455305.
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Trigonomtric singular well

In this case, we consider a magnetic field of the form

B = (0,0, Bycsc?ux) = A = (0, —& COt/J,X,O) , 0<pux<m.
1

The corresponding superpotential is

B
w(x) =k — Dcotux, D= I%L.

While the SUSY partner potentials tun out to be

VE(x) = k* — D? + D(D + p)csc?®ux — 2kD cot pux.

(43)

(44)

(45)
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Trigonometric singular well

The eigenfunctions are in terms of the pseudo-Jacobi polynomials:

k2D?
(D + np)>’
(46)

Uy (2) = (P -1) (et 2erapxplmsamntion moe i) (z), gy = K2 =D+ (D+np)*~

where s =D/pu, s, =S_+1,a_ = —kD/u(D + nu), ay = —kD/pu(D + nu + 1),
z(x) =icotpx and n=0,1,2, ...

The square-integrable conditions of the eigenfunctions limit the parameter range, in other
words, D, > 0.
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Trigonometric singular well
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Figura: (Left) Shape-invariant potentials for the trigonometric singular well. (Right) Energies for the Dirac electron. The parameter values taken are D = 4, u = 1, k = —2.

Picture taken of3.

3Kuru/Negro y Nieto: Exact analytic solutions for a Dirac electron moving in graphene under magnetic fields (ver n. 2).
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Exponential decaying field

As last example, let us take an exponential decaying field:
Cux Bo
B =(0,0,Bpe ") = A = 0,—7e Bx0 . (47)

The corresponding superpotential:

_ eBy
—k—De ", D=2 48
w(x) = k — De™H, ch (48)

Thus, the SUSY partner potential are

VE(x) = K2+ D2e™2 — 2D (k¥ %) e, (49)
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Exponential decaying field

The eigenfunctions are given in terms of the associated Laguerre polynomials:
VE(x) = 25 e LA (2), ey = K (k= ), (50)

with s = k/u, sy =s_ — 1y z(x) = (2D/u)e™"*. In this case, the square-integrable
conditions limit the parameter values D, k, ;# > 0 and the number of bound states by means of
the following inequality k > pn.

Vilx), Valx), eBix)fch

i 45 & k)

Figura: (Left) Shape-invariant potentials for the exponential decaying field. (Right) Energies for the Dirac electron. The parameter values taken are D = 1, 1 = 1, k = 6. Picture

taken of*.

4Kuru/Negvo y Nieto: Exact analytic solutions for a Dirac electron moving in graphene under magnetic fields (ver n. 2).
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SUSY-QM and complex superpotentials

If we have intertwining superpotentials with complex superpotentials, i.e.,
i d
L* = o + w(x), w(x)eC. (51)

In this case, the operator L is not the hermitian conjugate of L~. thus, both hamiltonians H*
are not hermitian, and in general their eigenvalues ¢, will be complex.

However, jthe supersymmetric algorithm works similar
to the real case!
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Graphene in complex magnetic fields

Let us consider a magnetic field perpendicular to the graphene surface of the form
B=B(x)z B(x)eC.
In the Landau Gauge, the vector potential that generates B can be written as

dA(x)

A=A, B(x)=—r

And, using the minimal coupling rule, we can obtain a similar system of equations

{d;‘i T k+ C—ehA(x)] ¥ (x) = et (x),

ok AR 0 =2,
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Constant magnetic field

Our first example is a constant magnetic field B = B z, B € C. In the Landau gauge A =

and the superpotential turns out to be

2eB
W(X):k—l-%x, w=2

While the SUSY partner potentials are

Their corresponding eigenfunctions and eigenvalues are given by

€n = Nw,

e TH(C), -T<0<3,
vr ) = {c,, “SH(E), T<o<

where ¢ = /w/2(x + 2k/w), € = \/—w/2(x — 2k/w) and w = |wl|e.

Bxy

(56)

(57)
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Constant magnetic field

6 5 4 -3 2 -1 0 1 2 SR
x v
(a) M eB/ch

(b)

Figura: Real part (a) and imaginary part (b) of the potentials vE (x), in the case of constant magnetic field with |w| = k = 1 and 6 = 7 /10.
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Constant magnetic field
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Figura: (a) First energy eigenvalues in the complex plane for a constant magnetic field. (b) Real and imaginary part of the first energy eigenvaluesas function of k for |w| = 1y
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Trigonometric singular well

Now, let us consider a magnetic field of the form B = Besc?ux 2, B € C, ;n € RT. Then, the
vector potential is A = —B/p cot ux §, and the superpotential is

B
w(x) =k —Dcotux, D= %. (59)
The SUSY partener potential turns out to be
VE(x) = D(D =+ p)csc®ux — 2Dk cot pux + k? — D2, (60)

whose solutions are given by

wi(g) — Cn(_1)7(5i+n)/2(1 + CQ)*(Si+")/2e’iarCCOt(C)'P'(]*Si*n*fri7*5i*n+/fi)(l‘c)’

k2D? T T (61)

=k*-D*+ (D 2 17 T cpg<Z

En + (D + nu) CETIE 5 <0<
withs. =D/p, sy =s_+1, r- = —kD/u(D + nu), ry = —kD/u(D + nu + p), D = |D|e™

and ¢ = cot ux.
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Trigonometric singular well

MV
mwv:
B eB/ch

0 rr}4 rr}2 3r;/4 m
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Figura: Real part (a) and imaginary part (b) of the potentials Vi(x) in the case of a trigonometric singular well with |D| = 4, k = —2, 0 = 7w /10 and p = 1.
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Trigonometric singular well
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Figura: (a) First energy eigenvalues in the complex plane for the trigonometric singular well. (b) Real and imaginary part of the first energy eigenvalues as functions of k for
D] =4, k= —2,p=1and 6 = 7/10.
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Exponenetial decaying field

Our last example is an exponential decaying field B = Be™#* 2,B € C,u € R". The
corresponding vector potential is A = —B/pe % §. Thus, the superpotential is given by

eB

w(x) =k —De ™", D= E (62)
While the SUSY partner potentials are
VE(x) = k2 + D?e~2* — 2D (k + %) e, (63)
whose solutions are
U (Q) = ea¢™ e T L), g = K — (k= ), (64)

where s_ = k/u, s; =s_ —1, D= |D|e", —1/2 < § < 7/2 and ¢ =2D/ue™", k > nu.
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Exponential decaying field
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Figura: Real part (a) and imaginary part (b) of the potentials Vi(x) in the case of the exponenetial decaying field with [D| = 1,k =6, 0 = 7 /10 and p = 1.
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Exponenetial decaying field
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Figura: (a) First energy eigenvalues in the complex plane for the exponential decaying field. (b) Real and imaginary part of the first energy eigenvalues as functions of k for

k=6, =1
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A possible physical interpretation

The total probability density of a bound state of the effective Hamiltonian of the graphene in
the presence of a complex magnetic field evolves as follows

[En]

Im
Pr(t) = (¥n(t)|Wa(t)) = €7 (W,(0)|W,(0)). (65)
For the case of a constant magnetic field, if the argument § < 1, the imaginary part of the

energy eigenvalue is approximately 6/2, and the maximum time for which the probability
density is conserved is limit by

T (66)

1
Ve0y/wln’

for the first exited state and a magnetic strength of 5 T and § = 7/36, T < 95 fs.
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In summary

» The supersymmetric transformation is a useful tool to find the solutions to the effective
Hamiltonian describing the graphene monolayer under the presence of a magnetic field
perpendicular to it.

> It is also possible to find the solutions for the case of complex magnetic field profiles,
which makes the effective Hamiltonian of the monolayer non-hermitian. However, this
system decays rapidly to the real case if we consider that the argument of the field
amplitude is small.

» The use of SUSY-QM to solve Dirac-like equations describing 2D materials still has a long
way to go. We have worked Dirac materials in (3 4 1)-dimensions and determined their
zero energy mode, see®. We are currently working on graphene under uniaxial stresses and
have found that there are a finite number of Landau levels.

5 Julio Cesar Pérez-Pedraza/Juan D. Garcia-Mufioz y A. Raya: Dirac materials in parallel non-uniform electromagnetic fields generated by SUSY: A new class of chiral Planar
Hall Effect?, 2023.
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