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Outline
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● The Nakanishi Integral Representation;
●  Solving Dyson-Schwinger equation in Minkowski space;
● Recent developments;
● Summary, perspectives and questions.
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The Dyson-Schwinger equations

Naturally sum infinitely many diagrams and therefore automatically contain nonperturbative information.

Equation of motion: tower of infinite coupled functional differential equations.F. Dyson, "The S Matrix in Quantum Electrodynamics", Phys. Rev. 75 (11) 1736 (1949).  
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Equation of motion: tower of infinite coupled functional differential equations.F. Dyson, "The S Matrix in Quantum Electrodynamics", Phys. Rev. 75 (11) 1736 (1949).  

Solving the DSE provides a nonperturbative solution of the theory!
Wide range of applications, from solid state physics to strong interaction problems.  
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DSE in Minkowski space
Usually defined and solved in Euclidean space:

● Lattice gauge theory simulations and its numerical solutions;
● QCD perturbation theory are strictly valid only at spacelike-momenta, the only possibility for Euclidean formulation.

Why Minkowski? Difficulties  to deal with singular behavior of physical quantities...
● Dynamical observables defined in the light-front;
● Electromagnetic form-factors (singularities!);
● 3d imaging that may clarify the hadron content (EIC facility in the future);
● ...
● QCD at finite density?
● Finite magnetic field?
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Developments in Minkowski space (ITA group)

de Paula,Ydrefors,Nogueira,Frederico,Salmè, PRD 105, L071505 (2022).

● Two-fermion homogeneous BSE. W. de Paula et al., PRD 94, 071901 (2016).
● Solution of the 3-body BSE. E.Ydrefors et al., PLB 791, 276 (2019).
● Pion electromagnetic form-factor. E. Ydrefors et al., PLB 820  136494 (2021).
● Proton image. Ydrefors and Frederico, PRD 104, 114012 (2021) 
● ……..

“Ioffe time”
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Main Tool: Nakanishi Integral Representation
● Generalization of the  Källén-Lehmman integral representation of two point functions, for n-point functions. N. Nakanishi, Phys. Rev. 130, 1230 (1963) and Prog.Theor.Phys.Suppl. 43, 1 (1969).
● Goal: Construction of a compact representations of the transition amplitude for a generic scattering process involving N external particles.
● Let’s consider a connected Feynman   diagram G with N external legs, n inner propagators and k loops. If pi are the external four-momenta: 
● Using now:
lj,mj: the four-momenta and mass of particles propagating inside the loops (j = 1,2,…,n);
qr: four-momenta to be integrated on the r-th loop    (r = 1,2,…,k).
Momentum conservations in each vertex gives:(bjr,cji = 1-, 0 or 1)
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Main Tool: Nakanishi Integral Representation
● Transition amplitude:

● With the Feynman parametric formula:

we obtain

Information about the number of loops and the masses
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Main Tool: Nakanishi Integral Representation
NIR idea: Remove all this dependence to the numerator, keeping the whole global analytic behavior in the denominator ⟶ Possibility to create an integral representation of the infinite sum of Feynman diagram with N external legs!
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Main Tool: Nakanishi Integral Representation
NIR idea: Remove all this dependence to the numerator, keeping the whole global analytic behavior in the denominator ⟶ Possibility to create an integral representation of the infinite sum of Feynman diagram with N external legs!

Weight function that carries out all the information about the loops;Set {sh} of all the independent scalars that can be constructed from N external four-momenta pi. Independent of the internal structure of the diagrams!We can sum the infinity diagrams with N external legs!

Nakanishi also proved that the weight function is unique in any perturbative order for a bosonic theory, and subsequently its validity was confirmed in the nonperturbative domain: Uniqueness of the integral representation!
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Comparison with Un-Wick rotated results: Bethe-Salpeter vertex

A. Castro et al., Journal of Physics: Conf. Series 1291 012006 (2019)

Un-Wick comparison with rotation in the ladder bosonic BSE
Wick rotation is the exact analytical continuation of the Minkowski space Nakanishi representation: Explorations in the complex plane.
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Comparison with Un-Wick rotated results:DSE in the Weak coupling limit

*S. Jia et al., Proceedings of HADRON-2019, arXiv:1912.00063, T. Frederico et al., Proceedings of NTSE-2018, arXiv:1905.00703.

● From Euclidean space formulation, in increments of δ: 
● Minkowski space: δ = π/2, or in a more conveninent notation ϴ = π/2 – δ.
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Fermion Dyson Schwinger Equation (Rainbow-Ladder)

● DSE for the above schematic representation:

Rainbow ladder approximation: 
Gluon propagator:
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Fermion Dyson Schwinger Equation (Rainbow-Ladder)
⟹ Dressed fermion propagator: 

⟹ Integral representation of the fermion propagator: 
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Vector and scalar spectral densities
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Fermion Dyson Schwinger Equation (Rainbow-Ladder)
⟹ Dressed fermion propagator: 

⟹ Integral representation of the fermion propagator: 

Gauge fixing

Pauli-Villarsregulator

Vector and scalar Self-Energy densities

Vector and scalar spectral densities
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Fermion Dyson Schwinger Equation
● Parameters: 
● Spectral densities are obtained from the IR of the self-energy:

● Solutions of DSE obtained writing the trivial relation               in a suitable form:

13 / 25



Fermion DSE solution

Connection Formulas

● Driving term:
● Kernel:
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Feynman gauge kernel (ξ = 1):

Remaining arbitrary ξ-gauge contribution:

Bare mass: Residue:
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DSE+Lattice QCD propagators: Enhancement of the quark-gluon vertex at the infrared region!†

 †Rojas et al., JHEP 10 (2013) 193; O. Oliveira et al., EPJC 79, 116 (2019).

Pauli-Villars regulator can also be effectively associated with the form factor of the γμ component of the quark-gluon vertex:

† O. Ol
iveira

 et al.
, EPJ

C 80:
484 (

2020
).
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Large coupling regime: Phenomenological model
Lattice fit
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Calibration of the model: Possibility to explore the chiral symmetry breaking region!

Appropriate behavior in the infrared require a large enough Kernel⇓Λ cannot be large  compared to 
mσ, and as a consequence, α must increase!DD, Frederico, de Paula, Ydrefors PRD 105, 114055 (2022). Fit of lattice data from  O. Oliveira, et al., PRD 99, 094506 (2019).
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Large coupling regime: Phenomenological model

DD, T. Frederico, W. de Paula, E. Ydrefors Phys. Rev. D 105, 114055 (2022).
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Large coupling regime: Phenomenological model
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Recent developments and perspectivesSpectral densities evaluated by solving the DSE the method described previously as inputs for the pion Bethe-Salpeter equation.
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Recent developments and perspectives
● Bethe Salpeter equation: 
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Recent developments and perspectives

● First approximation: Chiral limit! In this case, the pion quark-antiquark vertex is given by**

**C. S. Mello, et al., Phys. Lett. B, 766 86–93 (2017), L. Chang et al., PRL 110, 132001 (2013).

● Calculation of observables, more rigorous study of chiral symmetry breaking, ingredients from LQCD...
Pion decay constant:

● Bethe Salpeter equation: 
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Recent developments and perspectives
PRD 105, 114055

Set Pion decay constant (in MeV)
1 71.03 71.872 65.72 66.633 53.51 54.584 84.85 85.60New!
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Recent developments and perspectives
PRD 105, 114055

Set Pion decay constant (in MeV)
1 71.03 71.872 65.72 66.633 53.51 54.584 84.85 85.60New!

Next steps: 
● Valence wave function and probability amplitude. 
● BSA normalization:
● Calculation of more observables, more rigorous study of chiral symmetry breaking, ingredients from LQCD...
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● Better results for pion decay constant are obtained with solutions that converge very slow, due to the shape of the propagator spectral densities. However a similar discussion was already made in a phenomenological model.
**C. S. Mello, et al., Phys. Lett. B, 766 86–93 (2017).  Lattice data from M.B. Parappilly, et al., Phys. Rev. D 73 (2006) 054504. 
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Questions:
● How to construct the EoS at finite density and/or temperature in Minkowski space? Mallik, Sarkar: EPJC 61:489-494(2009): Real-time propagators at finite temperature and chemical potential.

⟶ Quark condensate (regularization): 
● Is it possible to retain the integral representation while including magnetic field effects?

⟶ Is there a way to write down the fermion propagator in such a way that overall the analytic structure is carried out in the denominator?
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● Possibility of calculation of dynamical observables;
● The Integral Representation as a very important tool to solve DSE and BSE;
● Inclusion of more sophisticated ingredients, as quark-gluon vertex, Lattice QCD (self energy, vertex, …) ⇒ more realistic theories! 
● Wide range of applications: Form factors, parton distribution functions, analytic structure of pion, kaon, nucleon, Nakanishi weight functions ... 
● Perspective of an EoS in Minkowski space for the first time in the literature (??)
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Thanks for your attention!
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