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Scope

Replica trick.
Example: Sherrington-Kirkpatrick model.
Example: Fermions in a magnetic Field.
Finite temperature.
Deconfinement transition.
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Replica trick I

The replica method was introduced through the spin glass
model:

H = −
∑
i,k

Jikσiσk,

where the Jik are uncorrelated Gaussian random variables with
zero mean and variance J2

ik = Kik.
It is necessary to obtain the proper averaged thermodynamic
potential

F = −kT ⟨lnZ⟩ave .
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Replica trick II

In order to average over macroscopic samples wherein a vast
number of different configurations of the Jik are operative, they
introduced the so-called "replica trick":1

lnZ = lim
n→0

Zn − 1

n

The average is computed before taking the limit n→ 0. It was
introduced by Parisi as a method to average the free energy,
defined via the logarithm of the partition function lnZ, of a
system over quenched (or frozen) disorder.

1Mézard M, Parisi G, Virasoro M. 1987. Spin glass theory and beyond: An An
Introduction to the Replica Method and Its Applications. World Scientific,
Singapore. 476pg.
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Replica trick III

It is used in
Spin glasses,
Polymer networks,
Zn field theory,
intermittency of turbulence,
Euclidean random matrices,
granular matter
AdS/CFT
etc.
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Example: Sherrington-Kirkpatrick model I

Given the Hamiltonian

H[σ] = −
N∑

⟨i,j⟩

Jijσiσj − h
N∑
i

σi

where σi ∈ {−1, 1}, h is the uniform magnetic field and the couplings
are random variables extracted from the distribution

P (J) =

√
N

2π
exp

(
−NJ

2

2

)
.
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Example: Sherrington-Kirkpatrick model II

Therefore the solution of the statics of such a system in presence of
quenched disorder requires the computation of the average of the
logarithm of the (sample dependent) partition function

ZJ =
∑
{σ}

exp(−βH[σ]) =
∑
{σ}

exp

+β
∑
⟨i,j⟩

Jijσiσj + βh
∑
i

σi

 ,

Since we need to compute the average of the free energy, we use the
trick

lim
n→0

Zn − 1

n
= logZ or lim

n→0

log
(
Zn
)

n
= logZ.
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Example: Sherrington-Kirkpatrick model III

Computing the average of the n-th power of the partition function is
a much easier task than computing the average of its logarithm:

Zn
J =

∫ (∏
i<j

dJijP (Jij)

)

×
∑
{σ}

exp

β∑
a

∑
⟨i,j⟩

Jijσ
a
i σ

a
j + βh

∑
a

∑
i

σa
i

 .
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Example: Sherrington-Kirkpatrick model IV

Since we know that∫
dMx exp

(
−
∑

i,k=1,M

Ai,kxixk +
∑
i,M

Bixi

)

=

√
π

det(A)
exp

(
1

4

∑
i,k=1,M

(
Â−1

)
i,k
BiBk

)
,

Then, we end with an effective lagrangian

Zn
J =

∑
{ς}

exp

(
βh
∑
i

∑
a

σa
i +

β2

2N

∑
i<j

∑
a,b

σa
i σ

b
iσ

a
j σ

b
j

)
.
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Example: Sherrington-Kirkpatrick model V

The interaction term can be rewritten in the following way:

∑
i<j

∑
a,b

σa
i σ

b
iσ

a
j σ

b
j = N2

∑
a<b

(
1

N

∑
i

σa
i σ

b
i

)2

+
N2n−Nn2

2
.

The replicated partition function reads

Zn
J =

∑
{σ}

exp

(
βh
∑
i

∑
a

σa
i

)
exp

(
β2

4

(
Nn− n2

))

×
∏
a<b

exp

 β2

2N

(∑
i

σa
i σ

b
i

)2
 .
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Example: Sherrington-Kirkpatrick model VI

Zn
J =

∑
{σ}

exp

(
βh
∑
i

∑
a

σa
i +

β2

4

(
Nn− n2

))(2πβ2

N

)n(n−1)
2

∏
a<b

∫
dQab exp

(
−N

2
β2Q2

ab + β2
∑
i

σa
i σ

b
iQab

)
,

We are now interested in computing the free energy

f(β, h) = lim
n→0

lim
N→∞

(
− 1

βNn
lnZn

J

)
.
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Example: Sherrington-Kirkpatrick model VII

In principle, the two limits should have been taken in the opposite
order, nevertheless the calculation would be impossible with the right
order of the limits, we can express the replicated partition function as
follows

Zn
J ∝

∫
dQ exp(−NS[Q, h])

with

S[Q, h] = −β
2n

4
+
β2

2

∑
a<b

Q2
ab −W [Q]

and

W [Q] = ln
∑
{σ}

exp

(
βh
∑
a

σa + β2
∑
a<b

σaσbQab

)
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Example: Sherrington-Kirkpatrick model I

Taking the saddle point w.r.t. the order parameter Q we obtain that
the free energy can be written as

f(β, h) = lim
n→0

1

βn
extrQ S[Q, h].
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Fermions in a magnetic field I2

We consider a physical scenario where a classical and static magnetic
field background, possessing random spatial fluctuations,
modifies the quantum dynamics of a system of fermions general, we
distinguish three main c. Inontributions to the gauge field:

Aµ(x) → Aµ(x) + Aµ
BG(x) + δAµ

BG(x),

Where Aµ(x) denotes the dynamical quantum field, BG stands for
"background", referring to the classical magnetic field imposed by
experimental conditions.

2Castaño-Yepes, J.D.,Loewe, M.,Muñoz, E.,Rojas, J.C. and Zamora, R. QED
fermions in a noisy magnetic field background, Phys.Rev.D 107 (2023) 9,
096014
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Fermions in a magnetic field II

We consider the effect of static (quenched) white noise spatial
fluctuations δAµ

BG(x) with respect to the mean value Aµ
DC(x),

satisfying the statistical properties〈
δAj

BG(x)δA
k
BG (x′)

〉
= ∆Bδj,kδ

3 (x− x′) ,

⟨δAµ
BG(x)⟩ = 0.

These statistical properties are represented by a Gaussian functional
distribution of the form

dP [δAµ
BG] = N e

−
∫
d3x

[δAµ
BG

(x)]
2

2∆B D [δAµ
BG(x)] .
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Fermions in a magnetic field III

We split the lagrangian in to terms:

L = LFBG + LNBG,

where

LFBG = ψ̄ (i ̸ ∂ − eABG − eA−m)ψ − 1

4
FµνF

µν

represents a Lagrangian which describes a fermion interaction with
quantized photons and a background magnetic field. The other term
is

LNBG = ψ̄ (−eδABG)ψ

representing the interaction with ther spatial fluctuation.
J.Castaño,M.Loewe,E.Muñoz, J.C.Rojas and R.ZamoraThe Replica Trick and Temperature July 16, 2024 16 / 40



Fermions in a magnetic field IV

The generating functional is given by

Z[A] =

∫
D[ψ̄, ψ]ei

∫
d4x[LFBG+LNBG],

in order to compute the statistical average over the magnetic
background noise, we apply the replica trick:

lnZ[A] = lim
n→0

Zn[A]− 1

n
.
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Fermions in a magnetic field VI

After the computating the Gaussian integral, we end with an effective
Lagrangian

S̄
[
ψ̄a, ψa;A

]
=

∫
d4x

(∑
a

ψ̄a (i ̸ ∂ − eABG − e ̸ A−m)ψa − 1

4
FµνF

µν

)

+ i
e2∆B

2

∫
d4x

∫
d4y

∑
a,b

3∑
j=1

ψ̄a(x)γjψa(x)ψ̄b(y)γjψ
b(y)δ3(x− y).

To be continued ... (EM or ML).
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Finite temperature I

We assume a non-equilibrium scenario, where temperature is not
defined uniformly through the whole system, but smaller regions may
still be pictured as nearly-thermalized subsystems. Therefore, we
model this situation by an ensemble of subsystems whose individual
temperatures T = T0 + δT are subjected to stochastic fluctuations
with zero mean δT = 0, but finite variance δT 2 = ∆. In terms of the
inverse temperature

β = (T0 + δT )−1 = T−1
0 − δT

T 2
0

= β0 + δβ.
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Finite temperature II

So
δβ = −δT

T 2
0

,

δβ = −T−2
0 δT = 0,

δβ2 = T−4
0 δT 2 = β4

0∆ = ∆β.

Assuming gaussian distribution

dP [δβ] =
d(δβ)√
2π∆β

e
− δβ2

2∆β .
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Finite temperature III

Begining with the Grand-Canonical ensemble

Z(µ,V , T ) = Tr
[
e−β(Ĥ−µN̂)

]
where, in particular, we shall focus on a system of QED fermions,
described by the Hamiltonian operator including the chemical
potential

Ĥ − µN̂ =

∫
d3xψ̂†(x)γ0

[
γ · (−i∇) +m− γ0µ

]
ψ̂(x)

≡ K̂.
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Finite temperature IV

As we know, we must compute the average

Zn = Tr

[
exp

{
− (β0 + δβ)

n∑
a=1

K̂(a)

}]
=

∫
dP [δβ] Tr

e−β0
∑n

a=1 K̂
(a)

1 +
∞∑
j=1

(−1)j(δβ)j

j!

(
n∑

a=1

K̂(a)

)j
 ,

= Tr

e−β0
∑n

a=1 K̂
(a)

1 +
∞∑
j=1

∆j
β

(2j)!
(2j − 1)!!

(
n∑

a=1

K̂(a)

)2j
 ,

=

(
1 +

∞∑
j=1

∆j
β

(2j)!
(2j − 1)!!

∂2j

∂β2j
0

)
Tr
[
e−β0

∑n
a=1 K̂

(a)
]
.

So, we have

Zn =

(
1 +

∞∑
j=1

∆j
β

(2j)!
(2j − 1)!!

∂2j

∂β2j
0

)
Zn

0 .
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Finite temperature V
In order to compute the

Zn
0 =

n∏
a=1

∫
D
[
ψ†
a, ψa

]
× exp

[
−
∫ β0

0

dτ
n∑

a=1

ψ†
a(x, τ)γ

0
(
γ0 (∂τ − µ) + γ · p+m

)
ψa(x, τ)

]
= det

[
∂τ − µ+ γ0γ · p+mγ0

]n
= exp

{
nTr ln

[
∂τ − µ+ γ0γ · p+mγ0

]}
= exp (n lnZ0)

Here, we also defined the partition function for the fermion gas

lnZ0 = Tr ln
[
∂τ − µ+ γ0γ · p+mγ0

]
= V

∫
d3p

(2π)3

∑
k∈Z

tr ln
[
iωk − µ+ γ0γ · p+mγ0

]
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Finite temperature VI

From the eigenvalues of the matrix in the argument of the logarithm:
iωk − µ± Ep, with Ep =

√
p2 +m2, it is obtained

lnZ0 =2V
∫

d3p

(2π)3

∑
k∈Z

{ln [iωk − µ+ Ep]

+ ln [iωk − µ− Ep]} ,

=2V
∫

d3p

(2π)3
{
ln
(
1 + eβ0(µ−Ep)

)
+ ln

(
1 + eβ0(µ+Ep)

)}
.
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Finite temperature VII

The average of the partition function is then:

lnZ = lim
n→0

Zn − 1

n
=

(
1 +

∞∑
j=1

∆j
β

(2j)!
(2j − 1)!!

∂2j

∂β2j
0

)
lim
n→0

en lnZ0 − 1

n
,

=

(
1 +

∞∑
j=1

(∆β/2)
j

j!

∂2j

∂β2j
0

)
lnZ0,

= exp

[
∆β

2

∂2

∂β2
0

]
lnZ0,
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Finite temperature VIII

In the weak limit, m2∆β ≪ 1. The expansion is truncated up to first
order in the fluctuation ∆, to obtain

lnZ/Z0 =
∆β

2

∂2

∂β2
0

lnZ0 +O
(
∆2

β

)
= β0 (PV − (PV)ig )

where β0(PV)ig = lnZ0 is the equation of state for the ideal Fermi
gas. Therefore, up to O (∆2), the excess pressure δP ≡ P − Pig of
the Fermi gas due to the average effect of the temperature
fluctuation is

δP ≡ P − Pig =
∆β

2Vβ0
∂2

∂β2
0

lnZ0 +O
(
∆2
)
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Finite temperature IX

From the differential form of the Grand Potential for the ideal
reference system, we have

dΩ0 = −PdV − SdT0 −Ndµ,

it is concluded that

S = − ∂Ω0

∂T0

∣∣∣∣
µ,V

.
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Finite temperature X

On the other hand, using T0 = β−1
0 and the definition Ω0 =

−T0 lnZ0, it is possible to show the identity

∆β

2β0V
∂2

∂β2
0

lnZ0 =
∆βT

2
0

2V
T0
∂S

∂T0

∣∣∣∣
µ,V

,

=
∆βT

2
0

2V

Cv +

(
T0

∂N
∂T0

∣∣∣
µ,V

)2

〈
(δN̂)2

〉
 ,

≥ 0.
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Finite temperature XI

We expect for the excess pressure due to random temperature
fluctuations in the ensemble to be positive δP ≥ 0 at first order in
∆. Indeed, a direct calculation of the second derivative of the Grand
Partition function, leading to the explicit formula

δP =
∆β

β0

∑
s=±1

∫
d3p

(2π)3
(Ep + sµ)2 nF

(
Ep + sµ

T0

)
×
[
1− nF

(
Ep + sµ

T0

)]
,

where nF (x) = (ex + 1)−1 is the Fermi distribution.
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Finite temperature XII

Defining the dimensionless variables x ≡ E/m, y ≡ T0/m, z = µ/m,
and ∆̃ ≡ ∆/m2, such that we have

δP = m4∆̃
2π2y3

∑
s=±1

∫∞
1
dxx(x+ sz)2

√
x2 − 1

×nF

(
x+sz
y

)
nF

(
−x+sz

y

)
,

where we used the property nF(−x) = 1− nF(x).
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Finite temperature XIII

We can repeat the analysis for an ideal gas of massless Bosons (with
chemical potential µB = 0 ), whose Grand-potential is

ΩB
0 = −T0 lnZB

0 = −VT 4
0

6π2

∫ ∞

0

dx
x3

ex − 1

= −νBV
π2T 4

0

90

where νB represents the total number of discrete degrees of freedom.
The ideal gas pressure for Bosons in equilibrium at temperature T0 is
thus

PB
ig = νB

π2T 4
0

90
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Finite temperature XIV

while the corresponding excess pressure due to nonequilibrium
thermal fluctuations will be,

δPB = P − PB
ig =

∆β

2β0V
∂2

∂β2
0

lnZB
0

= νB
π2

15
∆ββ

−6
0 = νB

π2

15
∆T 2

0 > 0
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Finite temperature XV

Figure: Excess pressure of the Fermi gas, computed up to order O(∆), as a
function of the average temperature T0, and the chemical potential µ.
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Finite temperature XVI

Figure: Pressure normalized to T 4
0 when µ = 0 for the ideal fermion gas

(dotted line), the excess pressure (dashed line), and the total pressure
(continuous line). The arrow indicates the asymptotic ideal gas limit at
high temperatures.
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Deconfinement transition I
Using bag model considerations. and assuming that the Hadronic
phase is mainly constituted by pions (with µ = 0 and νB = 3 for
charged states 0,± ), applying our expression, we have that its
pressure, including the excess pressure effect due to temperature
fluctuations, would be

PHad = 3
π2T 4

0

90
+ δPHad.

For the QG plasma phase we have νF = 2 · 3 · 2 = 12 for quarks, and
νB = 2 · (32 − 1) = 16 for gluons, such that

PPlasma =

(
νB +

7

4
νF

)
π2T 4

0

90
+ δPPlasma −B

=
37π2

90
T 4
0 + δPPlasma −B
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Deconfinement transition II

Where B ∼ 200MeV. The critical temperature Tc is obtained by
imposing the condition of equal pressures at both phases at the phase
transition, i.e.

3
π2T 4

c

90
=

37π2

90
T 4
c + δPNet −B,

where we defined the net excess pressure as

δPNet = δPPlasma − δPHad = δPG − δPHad + δPQ,

= 13
π2

15
∆T 2

0 + δPQ > 0.
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Deconfinement transition III

Finally, solving for Tc, we obtain

Tc = T 0
c

(
1− δPNet

(T 0
c )

4

)1/4

≤ T 0
c ,

with T 0
c = (45B/17π2)

1/4 ∼ 144MeV.
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Summary I

Replica trick is used in order to obtain an effective action due to
classical random fluctuations.
We have considered an ensemble of subsystems at different
temperatures T = T0 + δT , with average T0 and standard
deviation δT 2 = ∆. These statistical properties imply that the
inverse temperature β = β0 + δβ can be modeled by a Gaussian
distributed fluctuation δβ, with zero mean and standard
deviation δβ2 = ∆β = β4

0∆.
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Summary II

By first considering a non-interacting system of QED fermions,
we applied the replica trick to obtain the statistical average of
the Grand Potential as a series expansion at all orders in the
parameter ∆.
From our expression, we obtained the excess pressure with
respect to the ideal Fermi gas due to the thermal fluctuations.
The same analysis can be carried out for an ideal gas of Bosons,
for which we also obtained explicit results for the corresponding
excess pressure.
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Thanx!
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