Finite energy sum rules under extreme conditions: A practical tool

Cristián Villavicencio

Centro de Ciencias Exactas – Universidad del Bio-Bio

First Latin American Workshop on Electromagnetics Effects in QCD

Puerto Vallarta, Mexico

July 2024

Motivation

Extreme temperature

- Relativistic heavy-lon collision experiments
- Early universe

Extreme density

- Compact stars
- Relativistic heavy-Ion collision experiments

Extreme magnetic fields

- Peripheral heavy ion collision experiments
- Magnetars

Outline

- Introduction to finite energy sum rules (FESR)
- Medium effects
- The QCD sector
- Condensates
- Hadronic sector
- FESR under external electroamgnetic effects

Introduction to FESR

The spectral function

Two current correlator

$$\Pi_{\mu\nu}(x-y) = i\langle 0|TJ_{\mu}(x)J_{\nu}^{\dagger}(y)|0\rangle$$

Fourier transformation

$$\Pi_{\mu\nu}(q) = q_{\mu}q_{\nu}\Pi_{L}(q^{2}) + (g_{\mu\nu}q^{2} - q_{\mu}q_{\nu})\Pi_{T}(q^{2})$$

Spectral function

$$\rho(s) = \frac{1}{\pi} \operatorname{Im}\Pi(s + i\epsilon) \qquad \qquad \Pi(p) = \int_0^\infty ds \, \frac{\rho(s)}{s - p^2},$$

 $s_0 \rightarrow$ Hadronic continuum threshold

FESR Quark-hadron duality $\Pi^{\text{Had}} \leftrightarrow \Pi^{\text{QCD}}$

Cauchy's theorem

$$\frac{1}{\pi} \int_0^{s_0} ds \, s^{N-1} \, \mathrm{Im}\Pi^{\mathrm{had}}(s+i\epsilon) = \frac{-1}{2\pi i} \oint_{|s|=s_0} ds \, s^{N-1} \, \Pi^{\mathrm{QCD}}(s)$$

"Pac-man" contour

$$\oint_{s_0} \to \text{QCD} \qquad \qquad \int_0^{s_0} \to \text{hadron}$$

Continuum hadronic threshold

Continuum hadronic threshold

Operator Product Expansion (OPE)

$$\Pi^{\text{QCD}}(x,y) = \Pi^{\text{pQCD}}(x-y) + \sum_{n>0} C_{2n}(x-y) \ \langle \mathcal{O}_{2n} \rangle(x+y)$$

Short distance – high energy large distance – low energy

 C_{2n} Wilson coefficients $\langle \mathcal{O}_{2n}
angle$ condensates

In momentum space, short distance expansion, high *s* expansion

$$\Pi^{\rm QCD}(s) = \Pi^{\rm pQCD}(s) + \sum_{n>0} \tilde{C}_{2n}(\Lambda) \frac{\langle \mathcal{O}_{2n} \rangle(\Lambda)}{s^n}$$

Operator mixing

$$\Pi(s) = \Pi_{\text{pQCD}}(s,\Lambda) + \sum_{n>0} C_n(s) \langle : \mathcal{O}_n : \rangle$$

normal ordered condensates

Problems with the chiral limit

• $\ln(-s/m_q^2)$ terms

• limits $m_u \to 0, m_d \to 0 \neq m_d \to 0, m_u \to 0 \neq m_u = m_d \to 0$

$$Tq(x)\bar{q}(x) =: q(x)\bar{q}(x) : +S(x,x;\mu_{\overline{\mathrm{MS}}})$$

$$\langle \Omega|: \bar{q}q: |\Omega\rangle = \langle \Omega|T\bar{q}q|\Omega\rangle + S(x,x;\mu_{\overline{\mathrm{MS}}})$$

$$S(x) = \langle \Omega|T\bar{q}q|\Omega\rangle + S(x,x;\mu_{\overline{\mathrm{MS}}})$$

$$S(x,y) = \langle x | \frac{i}{i \partial \!\!\!/ - g \partial \!\!\!/ - m} | y \rangle$$

Solution to the chiral-limit problem

 $\langle \Omega | : \bar{q}q : |\Omega \rangle = \langle \bar{q}q \rangle (\mu_{\overline{\text{MS}}}) + S(x, x; \mu_{\overline{\text{MS}}})$ Non-normal ordered condensate

 \rightarrow operator mixing

 \rightarrow condensates become scale dependent and renormalizable

$$\Pi(s) = \tilde{\Pi}_{PQCD}(s, \mu_{\overline{MS}}) + \sum_{n>0} \tilde{C}_n(s, \mu_{\overline{MS}}) \langle \mathcal{O}_n \rangle (\mu_{\overline{MS}})$$

Example

$$\langle:\bar{q}\,\gamma_{\mu}iD_{\nu}\,q:\rangle = \langle\bar{q}\,\gamma_{\mu}iD_{\nu}\,q\rangle + \mathrm{tr}\int\frac{d^{d}k}{(2\pi)^{d}}\,\gamma_{\mu}i\tilde{D}_{\nu}\,S_{G}(k;\mu_{\overline{\mathrm{MS}}})$$

In vacuum

$$\langle:\bar{q}\gamma_{\mu}iD_{\nu}q:\rangle = \langle\bar{q}\gamma_{\mu}iD_{\nu}q\rangle + \frac{N_{c}m^{4}}{8\pi^{2}}\left[\frac{1}{d-4} + \ln\left(\frac{m}{\mu_{\overline{\mathrm{MS}}}}\right) - \frac{3}{4}\right]g_{\mu\nu} + \frac{1}{48}\langle G^{2}\rangle g_{\mu\nu}$$

then $\ln(-s/m^2) \rightarrow \ln(-s/\mu_{\overline{MS}}^2)$

FESR features

• cuts the OPE series (vacuum with no radiative corrections)

$$\oint_{s_0} \frac{ds}{2\pi i} s^{N-1} \sum_{n>0} C_{2n} \frac{\langle \mathcal{O}_{2n} \rangle}{s^n} = C_{2N} \langle \mathcal{O}_{2N} \rangle$$

• No need to calculate the full form factor (can integrate contour before loop momentum integration or Feynman parameters integration)

$$\oint_{s_0} ds \int \frac{d^4k}{(2\pi)^4} \, \frac{1}{(p+k)^2 - m^2} \frac{1}{k^2 - m^2} \to \int \frac{d^4k}{(2\pi)^4} \oint_{s_0} ds \, \frac{1}{(p+k)^2 - m^2} \frac{1}{k^2 - m^2} + \frac{1}{k^2 \frac{1}{k^2 -$$

Medium effects

Medium effects:

Temperature

Chemical potential

$$\boldsymbol{X} = T, \mu, B, E, \dots$$

External electromagnetic fields

$$\Pi^{\text{QCD}}(p, \boldsymbol{X}) = \Pi^{\text{pQCD}}(p, \mu_{\overline{\text{MS}}}, \boldsymbol{X}) + \sum_{n>0} C_n(p, \mu_{\overline{\text{MS}}}) \ \langle \mathcal{O}_n \rangle(\mu_{\overline{\text{MS}}}, \boldsymbol{X})$$

- New condensates due to symmetry breaking
- More FESR equations
- Infrared Wilson coefficients
 - \rightarrow is assumed all medium effects in the condensate

Finite temperature and density

$$\Pi(\omega, \boldsymbol{p}^2) = \Pi^{\text{even}}(\omega^2, \boldsymbol{p}^2) + \omega \Pi^{\text{odd}}(\omega^2, \boldsymbol{p}^2)$$

$$\int_0^{s_0} \frac{ds}{\pi} \, s^N \operatorname{Im}\Pi^{\text{had}}(s+i\epsilon,0) \quad = -\oint_{|s|=s_0} \frac{ds}{2\pi i} \, s^N \Pi^{\text{QCD}}(s,0) + \operatorname{Res}_{s\to 0} \left[s^N \Pi^{\text{QCD}}(s,0) \right]$$

Scattering with the thermal bath term

16/56

Finite temperature and density

 $\Pi(\omega, {oldsymbol p}^2)$

$$\int_{-\omega_0}^{\omega_0} \frac{d\omega}{\pi} \,\omega^{n+1} \mathrm{Im}\,\Pi^{\mathrm{had}}(\omega+i\epsilon,0) = -\oint_{\omega_0} \frac{d\omega}{2\pi i} \,\omega^{n+1} \Pi^{\mathrm{QCD}}(\omega,0) + \operatorname{Res}_{\omega=0} \left[\omega^{n+1} \Pi^{\mathrm{QCD}}(\omega,0)\right]$$

Scattering with the thermal bath term

$$\Pi_i^{\text{had}}(\omega, \boldsymbol{p}) = \int_0^\infty dp_0^2 \, \frac{\rho_i(p_0, \boldsymbol{p})}{p_0^2 - \omega^2}$$

17/56

Finite temperature → Resonances "melt"

 s_0 acts as an order parameter

 $S_0 \rightarrow$ deconfinement

Nucleon threshold at finite baryon density

Dominguez, Loewe, Villavicencio, Zamora PRD **108**, 074024 (2023)

The QCD sector

Vacuum

Operators \rightarrow quark and gluon condensates in combination with quark mass

$$\Pi^{\rm pQCD}(s) \sim \log(-s)$$

$$\begin{array}{lll} \langle O_3 \rangle & \sim & \langle \bar{q}q \rangle \\ \\ \langle O_4 \rangle & \sim & \langle \alpha_s G^a_{\mu\nu} G^{a\mu\nu} \rangle, \quad m_q \langle \bar{q}q \rangle \\ \\ \\ \langle O_5 \rangle & \sim & \langle \bar{q} \, g_s G^a_{\mu\nu} t^a \sigma^{\mu\nu} q \rangle \end{array}$$

Example: charged pions

Axial current, hadronic sector

$$A_{\mu}(x) = -f_{\pi}\partial_{\mu}\pi^{+}(x)$$

Axial current, QCD sector

$$A_{\mu}(x) = \bar{d}(x)\gamma_{\mu}\gamma_{5}u(x)$$

Axial – Axial correlator and derivatives

$$\Pi_{\mu\nu}^{A}(q^{2}) = i \int d^{4}x \, e^{iqx} \, \langle 0|T[A_{\mu}(x)A_{\nu}^{\dagger}(0)]|0\rangle = (q_{\mu}q_{\nu} - q^{2}g_{\mu\nu}) \, \Pi_{T}(q^{2}) + g_{\mu\nu} \, \Pi_{d}(q^{2})$$
$$\Pi_{5\nu}(q^{2}) = i \int d^{4}x \, e^{iqx} \, \langle 0|T[i\partial \cdot A(x) \, A_{\nu}^{\dagger}(0)]|0\rangle = q_{\nu} \, \Pi_{5}(q^{2})$$
$$\psi_{5}(q^{2}) = i \int d^{4}x \, e^{iqx} \, \langle 0|T[\partial \cdot A(x) \, \partial \cdot A_{\nu}^{\dagger}(0)]|0\rangle$$

Ward identities

$$q^{\mu}\Pi^{A}_{\mu\nu}(q^{2}) = \Pi_{5\nu}(q^{2}) + \langle 0|[\bar{u}\gamma_{\nu}u - \bar{d}\gamma_{\nu}d]|0\rangle$$
$$q^{\nu}\Pi_{5\nu}(q^{2}) = \Psi_{5}(q^{2}) + \langle 0|[m_{u}\bar{u}u + m_{d}\bar{d}d]|0\rangle$$

Diagramatically

FESR for charged pions

$$\int ds \,\Pi_T \to \qquad \qquad 2 f_\pi^2 = \frac{s_0}{4 \,\pi^2}$$

$$\int ds \, \mathbf{s} \, \Pi_T \rightarrow \qquad 2 f_\pi^2 \, m_\pi^2 = \frac{s_0^2}{8 \, \pi^2} \, - \, 2m_q \, \langle \bar{q}q \rangle \, - \, \frac{1}{12\pi} \, \langle \alpha_s \, G^2 \rangle$$

$$\int ds \,\Pi_5 \to \qquad 2 f_{\pi}^2 m_{\pi}^2 = -4m_q \langle \bar{q}q \rangle + \frac{3}{2\pi^2} m_q^2 s_0$$

$$\int ds \,\Psi_5 \to \qquad 2f_{\pi}^2 \, m_{\pi}^4 \,=\, \frac{3m_q^2 \, s_0^2}{4 \, \pi^2} \,-\, 4m_q^3 \, \langle \bar{q}q \rangle \,+\, \frac{m_q^2}{2\pi} \, \langle \alpha_s \, G^2 \rangle$$

$$+\mathcal{O}(m_q/s_0)^n \tag{26/56}$$

Nucleon – nucleon correlator

hadronic sector

 $\eta_N(x) = \lambda_N \psi(x)$

proton interpolating function (QCD sector)

$$\eta_N(x) = \varepsilon^{abc}[(u^a)^T(x)C\gamma_\mu u^b(x)]\gamma^\mu\gamma_5 d^c(x).$$

Neutrons: u⇔d

$$\Pi(q) = i \int d^4x e^{iqx} \langle 0|T\eta(x)\bar{\eta}(0)|0\rangle \qquad = \not q \Pi_1(q^2) + \Pi_2(q^2)$$

Nucleon – nucleon correlator

$$\lambda_N^2 m_N = -\frac{s_0^2}{8\pi^2} \langle \bar{q}q \rangle + \frac{1}{12\pi} \langle \alpha_s G^2 \bar{q}q \rangle$$
28/56

Nucleon – Axial-vector correlator

double FESR

$$\int_0^{s_p} \frac{ds'}{\pi} \operatorname{Im}_{s'} \int_0^{s_n} \frac{ds}{\pi} \operatorname{Im}_s \Pi^{\operatorname{had}}(s, s', t) = \oint_{s_p} \frac{ds'}{2\pi i} \oint_{s_n} \frac{ds}{2\pi i} \Pi^{\operatorname{QCD}}(s, s', t)$$

Finite temperature and density effects

Propagators

$$\sim \frac{1}{(i\omega_n + \mu)^2 - \boldsymbol{p}^2 - m^2}$$

finite T and μ (Matsubara frequencies)

$$\sim \frac{i}{p_0^2 - \mathbf{p}^2 - m^2 + i\epsilon p_0(p_0 - \mu)} \qquad \text{finite } \mu \text{ and } T = 0 \text{ (time ordered propagator)}$$

$$=\frac{i}{p_0^2 - p^2 - m^2 + i\epsilon} - 2\pi\theta(p_0(\mu - p_0))\delta(p_0^2 - p^2 - m^2)$$

First detected by Bochkarev, Shaposhnikov, NPB **268**, 220 (1986)

Formalized in the quiral limit

Dominguez, Loewe, PLB 233, 201 (1989)

Scattering with the thermal bath

In the axial-axial correlator

$$\omega \Pi_{\rm sc} = \int \frac{d^3k}{(2\pi)^3} f(\boldsymbol{p}, \boldsymbol{k}) \frac{n_F (E_d - \mu) - n_F (E_u - \mu)}{\omega [\omega - (E_d - E_u)]}$$

Vanishes in the limit $p \to 0$ and $m_u = m_d$

$$E_d = \sqrt{(k+p)^2 + m_d^2}, \qquad E_u = \sqrt{k^2 + m_u^2}$$

After contour integration, the residue gives

$$\sim \int \frac{d^d k}{(2\pi)^d} f(\boldsymbol{p}, \boldsymbol{k}) \frac{n_F(E_d - \mu) - n_F(E_u - \mu)}{E_d - E_u} \rightarrow \frac{d^d k}{(2\pi)^d} f(\boldsymbol{p}, \boldsymbol{k}) n'_F(E - \mu)$$

pQCD are calculated with medium dependent propagators

 $OPE \rightarrow only condensates medium dependent$

Operator mixing? \rightarrow not well established in-medium

Prescriptions \rightarrow pQCD medium independent (baryon density) \rightarrow pQCD medium dependent

our findings \rightarrow Operator mixing contribution to pQCD is medium dependent \rightarrow Operator mixing contribution to OPE is considered in vacuum

$$\langle :\bar{q}\gamma_{\mu}iD_{\nu}q:\rangle = \langle \bar{q}\gamma_{\mu}iD_{\nu}q\rangle + c^{(0)}_{\mu\nu}(T,\mu,\dots) + \sum_{n>0}c^{(n)}_{\mu\nu}(0)\langle O_n\rangle$$

Condensates

Quark condensate

Example A-A correlator

Step 1

$$\begin{split} \langle \Omega | T A_{\mu}(x) A_{\nu}^{\dagger}(0) | \Omega \rangle &= \langle \Omega | T \bar{d}(x) \gamma_{\mu} \gamma_{5} u(x) \bar{u}(0) \gamma_{\mu} \gamma_{5} d(0) | \Omega \rangle \\ &= \left\{ \langle \Omega | : \bar{d}_{i}(x) u_{j}(x) \bar{u}_{k}(0) d_{l}(0) : | \Omega \rangle \\ &+ \langle \Omega | : \bar{d}_{i}(x) d_{j}(0) : S_{jk}^{u}(x) | \Omega \rangle + \langle \Omega | S_{li}^{d}(-x) : \bar{u}(0)_{k} u_{j}(x) : | \Omega \rangle \\ &- \langle \Omega | S_{li}^{d}(-x) S_{jk}^{u}(x) | \Omega \rangle \right\} [\gamma_{\mu} \gamma_{5}]_{ij} [\gamma_{\mu} \gamma_{5}]_{kl} \end{split}$$

Step 2: Small-x expansion

$$q(x) = q(0) + x^{\alpha} D_{\alpha} q(0) + \frac{1}{2} x^{\alpha} x^{\beta} D_{\alpha} D_{\beta} q(0) + \dots$$

Step 3: Operator mixing \rightarrow non-normal ordered condensates

Gluon condensate

Expansion in backroun gluon field

$$S(x,y) = \langle x | \frac{i}{i\partial - gG - m} | y \rangle$$

Example A-A correlator

Background gluon field small-x expansion

Fock-Schwinger gauge: $x^{\alpha}G^{a}_{\alpha}(x) = 0$

$$G^a_{\alpha}(x) = \int_0^1 dt \, t \, x^{\beta} G^a_{\alpha\beta}(tx) \approx \frac{1}{2} x^{\beta} G^a_{\alpha\beta}(0) + \frac{1}{3} x^{\rho} x^{\beta} D_{\rho} G^a_{\alpha\beta}(0) + \dots$$

In vacuum

 $\langle \bar{q}_i q_j \rangle \sim \langle \bar{q}q \rangle \delta_{ij}$

 $\langle \bar{q}_i D_\mu q_j \rangle \sim m_q \langle \bar{q}q \rangle [\gamma_\mu]_{ij}$

Finite temperature and density $\rightarrow u_{\mu} = (1, 0, 0, 0)$

 $\langle \bar{q}_i q_j \rangle \sim \langle \bar{q}q \rangle \delta_{ij} + \langle q^{\dagger}q \rangle [\gamma_0]_{ij}$

 $\langle \bar{q}_i i D_\mu q_j \rangle \sim m_q \langle \bar{q}q \rangle [\gamma_\mu]_{ij} + \langle \bar{q}i D_0 q \rangle u_\mu \delta_{ij}$

In vacuum

$$\langle \alpha_s G^a_{\mu\nu} G^a_{\alpha\beta} \rangle \sim \langle \alpha_s G^2 \rangle (g_{\mu\alpha} g_{\nu\beta} - g_\beta g_{\nu\alpha})$$

Finite temperature and density \rightarrow $u_{\mu} = (1, 0, 0, 0)$

$$\begin{split} \langle \alpha_s G^a_{\mu\nu} G^a_{\alpha\beta} \rangle &\sim - \left[u_\mu u_\alpha \eta_{\nu\beta} - u_\mu u_\beta \eta_{\nu\alpha} + u_\nu u_\beta \eta_{\mu\alpha} - u_\nu u_\alpha \eta_{\mu\beta} \right] \langle \alpha_s E^2 \rangle \\ &+ \left[\eta_{\mu\alpha} \eta_{\nu\beta} - \eta_{\mu\beta} \eta_{\nu\alpha} \right] \langle \alpha_s B^2 \rangle \end{split}$$

$$\eta_{\mu\nu} = g_{\mu\nu} - u_{\mu}u_{\nu}$$

If we consider external electromagnetic effects $\rightarrow F_{\mu\nu}$

Structures include all possible combinations of

 $g_{\mu\nu} \quad \epsilon_{lphaeta\mu
u} \quad u_{\mu} \quad F_{\mu
u}$

A large amount of condensates!

How to calculate condensates?

- By the sum rules
- through your favorite model
- lattice

Example: finite baryon density

 $\langle \mathcal{O}_n \rangle = \langle 0 | \mathcal{O}_n | 0 \rangle + \langle N | \mathcal{O}_n | N \rangle + \langle N N | \mathcal{O}_n | N N \rangle + \dots$

Gluon condensate:

Vacuum \rightarrow with FESR

temperature and density contribution \rightarrow through the traceanomaly (gauge only)

$$\rho(s) = \frac{1}{\pi} \operatorname{Im}\Pi(s + i\epsilon) \qquad \qquad \Pi(p) = \int_0^\infty ds \, \frac{\rho(s)}{s - p^2},$$

Example: Axial-vector correlator

 $\langle 0|TA_{\mu}(x)A_{\nu}^{\dagger}(0)|0\rangle$

$$1 = |\pi\rangle\langle\pi| + |\pi\pi\rangle\langle\pi\pi| + \dots$$

Saturation with one pion

Example: Nucleon-nucleon correlator

Example: a1

Or use some model, calculate the self-energy.. as you wish

Finite temperature and density

$$\Pi_i^{\text{had}}(\omega, \boldsymbol{p}) = \int_0^\infty dp_0^2 \, \frac{\rho_i(p_0, \boldsymbol{p})}{p_0^2 - \omega^2}$$

$$A_0(x) = -f_t \partial_0 \pi^+(x)$$

$$A_i(x) = -f_s \partial_i \pi^+(x)$$

$$\Pi^A_{\mu\nu}(p) = -2f_\pi^2 \frac{P_\mu P_\mu}{p_0^2 - v_\pi^2 p^2 - M_\pi^2}$$

 $P_0 = p_0, \qquad P_i = v_\pi^2 p_i$

$$f_{\pi} = \sqrt{f_s f_t}, \qquad v_{\pi} = \sqrt{f_s/f_t} \longrightarrow$$
 Imposed by Ward identity

Screening mass:

$$m_{sc} = M_{\pi} / v_{\pi}$$

46/56

External electromagnetic effects

QCD sector

In QCD, we can just do the same as with the gluons

 \rightarrow expansion in electromagnetic fields

Example: magnetic field $s_0 \sim 1 \text{ GeV}^2 \rightarrow |eB| < 0.1 \text{ GeV}^2 \sim 5m_\pi^2$ Big enough!

QCD sector

Magnetic field can reach larger values

Schwinger proper time or Landau levels?

→ complicated if we have different flavors (orthogonality breaks)

field expansion

Condition:
$$0 < m^2 - a < s_0$$

Expanded magnetic field propagator is good enough

$$G(x, x') = e^{i\phi(x, x)}S(x - x')$$

Example: fermions

$$\tilde{S}(p) = \frac{i(\not p+m)}{p^2 - m^2 + i\epsilon} - (\kappa B) \frac{i(\not p+m)\sigma_{12}(\not p+m)}{(p^2 - m^2 + i\epsilon)^2} - (qB) \frac{i\sigma_{12}(\not p_{\parallel} + m)}{(p^2 - m^2 + i\epsilon)^2} + 2i(qB)^2 \frac{(\not p_{\parallel} + m)\left[p_{\perp}^2 - \not p_{\perp}(\not p_{\parallel} - m)\right]}{(p^2 - m^2 + i\epsilon)^4} + \dots$$

$$p = (p^0, v_\perp \boldsymbol{p}_\perp, v_\parallel p^3)$$

Propagator expanded in Landau levels: No problem

Disc
$$\frac{1}{p_{\parallel}^2 - 2|eB|n - m^2} = i\pi\delta(p_{\parallel}^2 - 2|eB|n - m^2)$$
 \Longrightarrow Discrete results

Schwinger proper time \rightarrow Not recommended

Technical problems with the discontinuity

Disc
$$\int d\tau e^{ip_{\parallel}^2 \tau + \dots} f(\tau, B) = ?$$

Charged pion correlator

 $\begin{aligned} A_{\mu}(x) &= -f_{\pi}D_{\mu}\pi^{+}(x) \\ \Pi_{\mu\nu}^{AA}(x,y) &= i\langle 0|T[A_{\mu}(x)A_{\nu}^{\dagger}(y)]|0\rangle \\ \Pi_{5\nu}(x,y) &= i\langle 0|T[iD\cdot A(x)A_{\nu}^{\dagger}(y)]|0\rangle \\ \psi_{5}(x,y) &= i\langle 0|T[iD\cdot A(x)[iD\cdot A(y)]^{\dagger}]|0\rangle \end{aligned}$ Ward identity

$$Q^{\mu}\Pi^{AA}_{\mu\nu}(q^{2}) = \Pi_{5\nu}(q^{2}) - \Delta_{\nu}(q^{2})$$

$$Q_{\mu} = q_{\mu} + \frac{ie}{2}F_{\mu\nu}\frac{\partial}{\partial q_{\nu}}$$

$$Q^{*\nu}\Pi_{5\nu}(q^{2}) = \psi_{5}(q^{2}) + \Delta_{5}(q^{2}),$$

Alejandro's request

No summary, just some references

A. Raya, C.Villavicencio, "QCD sum rules at finite quark chemical potential and zero temperature," arXiv:2402.14137 [hep-ph]

C.A. Dominguez, M. Loewe, C. Villavicencio and R.Zamora, "Nucleon axial-vector coupling constant in magnetar environments," Phys. Rev. D 108, no.7, 074024 (2023)

C.Villavicencio, "Axial coupling constant in a magnetic background," Phys. Rev. D 107, no.7, 076009 (2023)

C.A. Dominguez, L.A. Hernandez, M. Loewe, C. Villavicencio and R. Zamora, "Magnetic field dependence of nucleon parameters from QCD sum rules," Phys. Rev. D 102, no.9, 094007 (2020)

C.A. Dominguez, M. Loewe and C. Villavicencio, "QCD determination of the magnetic field dependence of QCD and hadronic parameters," Phys. Rev. D 98, no.3, 034015 (2018)

A. Ayala, C.A. Dominguez, L.A. Hernandez, M. Loewe, J.C. Rojas and C. Villavicencio, "Quark deconfinement and gluon condensate in a weak magnetic field from QCD sum rules," Phys. Rev. D 92, no.1, 016006 (2015)

MUCHAS GRACIAS