

Table of contents

01 02 03

From SUSY to SUSY-QM Examples with planar

Fundamentals Dirac Theory Graphene

fermions

Ø

Ritus Propagator

0 $\frac{d}{dx}$ > x
 $y = cos(2x-1/3) + 1$ $f(-a)$

At the interface of High Energy and Condensed Matter Physics

 $\int dx + \int dy$

 $1 + x$ 10(x+3g)
 $1 + x$ 10(x+3g)

 $\frac{3}{244y^2}$
 $\frac{244y^2}{44y^2}$

 $V: Z=10(x+3y), x+1$
 $x=0, y=0, z=0$

 $y=f(x)$

Fundamentals 01

SUSY and SUSY-QM

Standard Model of Particle Physics

Most successful theory. Many free parameters.

 $\mathbf x$

 $\sqrt{4^2-x^3}$

 \circ

 $f(a)$

 $-a$

Great success with many free parameters

fdy

 $= 2$

Grand Unification

Unification of the fundamental interactions

- Almost the same strength
- Pairwise unification
- Can there be exact unification?

SUSY comes to rescue

 $= 2$ ζ

Minimal Supersymmetric Standard Model

fdy

 $= 2$ \leftarrow

Minimal Supersymmetric Standard Model

fdy

 $x = 2y^2 + 3$

SUSY is broken

No sparticle has been observed

- How is SUSY broken?
- SUSY-QM
- Beyond the MSSM

From high-energy physics to other realizations

 $y =$

V:
$$
z=10(x+3y)
$$
,
 $x=0, y=0, z=$

 $\mu = \ell(\kappa)$

SUSY-QM

 $1 + x$ 10(x+3g)
 $1 + x$ 10(x+3g)

 $\frac{3}{244y^2}$
 $\frac{244y^2}{44y^2}$

 $V: Z=10(x+3y), x+1$
 $x=0, y=0, z=0$

 $y=f(x)$

Dirac Theory 02

Planar Fermions

Relativistic Wave Equation

Trying to unify QM and SR, the Klein Gordon equation emerged as the first attempt

- **Negative Energy States**
- Probabilistic Interpretation of the wave function

Need a better idea!

 $(\partial_\mu \partial^\mu + m^2) \phi = 0$

 $V: Z=10(x+3y),$
 $x=0, y=0, z=$

 $y =$

 $\mu = \frac{\rho}{\epsilon}$

 $X = 2q2 + 3$

Relativistic Wave Equation

 $\mu = \ell(\epsilon)$

Dirac:

- Need a Hamiltonian linear in space derivatives
- Its squared is equivalent to the KG equation
- Has a neat probabilistic interpretation
- No negative energy states
 $E = m_0, m_0, -m_0, -m_0$
 $\begin{equation*} V: \begin{equation*} Z \geq 10 \left(Y + 3 \mathcal{Y}\right), \ \mathcal{S} \geq 0, \ \mathcal{S} = 0, \ \mathcal{S} = 10 \end{equation*} \end{equation*}$

Oops!

 $H_D = \vec{\alpha} \cdot \vec{p} + \beta m$

 α_i, β matrices

 $\sqrt{1}$

$$
\psi = \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_n \end{pmatrix}, \qquad |\psi|^2 \geq 0 \quad \stackrel{\mathcal{Y}^2}{\longleftarrow}
$$

 $x = 2y^{2} + 3$

Relativistic Wave Equation

 $\mu = \frac{\rho}{\epsilon}$

Dirac:

- $QM+SR =$ antimatter
- More intelligent equation that its creator

 $\psi_{\uparrow\downarrow}^>,$ $\psi_{\uparrow\downarrow}^<$

 $V: Z=10(x+3y),$
 $x=0, y=0, z=$

Relativistic Wave Equation in 2D

 $\mu = \frac{\rho}{\epsilon}$

Relativistic Wave Equation in 2D

dydz

 $X = 242 + 3$

Relativistic Wave Equation in 2D

Graphinos

- 4x4 Dirac Matrices
- Uniform magnetic field
- Dirac and Haldane masses

SHernández Ortiz, G Murguía, AR JPCM24(2012)015304

 $41 = COSx$

 $X = \mathcal{O}_1$

 $\frac{y}{1}$

Figure 2. Action of the operators \mathcal{Z}_+ in the reducible representation of graphinos. These operators reveal an exact SUSY-QM structure in the massless limit and hardly break such a structure if a Haldane mass term is included.

 $\mu = \ell(\epsilon)$

 $1 - x$ 10(x+3g)
 $1 - x$ 10(x+3g)

 $\frac{3}{244y^2}$

 $V: Z=10(x+3y), x+1$
 $x=0, y=0, z=0$

Graphene 03

The Age of Quantum Materials

Graphene

 $\mu = \ell'$

- 1 atom thick layer
- Genuine 2D crystal
- Remarkable properties
- Low energy, massless Dirac eq.

$$
H_g = v_F \vec{\sigma}\cdot\vec{p}
$$

Figure 1. Crystallographic structure of graphene (left) and the

Dirac points in the reciprocal k -space (right). The lattice parameters are $a_0 = 1.42 \text{ Å}$, $\mathbf{a}_1 = a_0 \sqrt{3} (1/2, \sqrt{3}/2)$ and $\mathbf{a}_2 = a_0 \sqrt{3}(-1/2, \sqrt{3}/2).$

Propagator

- Non-diagonal in momentum space
- Spectral representation
- Schwinger Method
- Ritus method
- Very few field configurations known

 $\mu = \ell(\epsilon)$

 $y =$

 $V: Z=10(x+3y),$
 $x=0, y=0, z=$

$$
x+3y
$$

$$
x^2 dz =
$$

Ritus Method

 y' = $CDS Lx'$ Ritus Method $(\gamma\cdot\Pi)^2\mathbb{E}_p=p^2\mathbb{E}_p$ \bullet Eigenfunctions of $(\gamma \Pi)^2$ $X = 2y^2 + 3$ $\int\mathrm{d}^d z\,\bar{\mathbb{E}}_{p'}(z)\mathbb{E}_p(z)\quad=\mathbb{I}\,\delta(p-p'),$ ● Ritus functions $y' = \cos x'$ $\int\mathrm{d}^d p\,\mathbb{E}_p(z')\bar{\mathbb{E}}_p(z)\quad=\mathbb{I}\,\delta(z-z'),$ $y =$ $\int d^ap \mathbb{E}_p(z') \mathbb{E}_p(z) = \mathbb{I} \, \delta(z-z'), \qquad \delta(z,z') = \int d^dp \, \mathbb{E}_p(z) \, \frac{1}{\gamma \cdot \bar{p} - m} \, \mathbb{\bar{E}}_{p'}(z') \ \mathbb{Y} \cdot \frac{1}{z} = 10 \, (\text{x+3 y}),$ ● Propagator

dydz

 $X = 2q2 + 3$

Ritus Method

Ritus Method

Perpendicular magnetic field (Landau-like gauge)

$$
[-\partial_x^2+(p_2+e{\mathcal W}_0(x))^2-e\sigma{\mathcal W}_0'(x)]F_{k,p_2,\sigma}=kF_{k,p_2,\sigma}
$$

● Uniform Magnetic Field and exponentially decaying magnetic field G. Murguía, A. Sánchez, E. Reyes, AR, Am. J. Phys. 78, 700–707 (2010)

 $y =$

V:
$$
z=10(x+3y)
$$
,
X=0, $y=0$, $z=$

 $\overline{\varkappa}$

$$
\sum_{x=y}^{x=y} \sum_{y=0}^{y} \sum_{y=0}^{x} (x - y)^2 E_p(z) = p^2 E_p(z)
$$
\n
$$
\sum_{y=y}^{x=y} \sum_{y=0}^{y+y} \
$$

W

$$
= \int\limits_{0}^{1} dx
$$

 $\overline{}$

$$
d\mathbf{y}d\mathbf{z} =
$$
\n
$$
\begin{array}{ll}\n\text{Ritus Method } (\gamma \cdot \Pi)^2 \mathbb{E}_p(z) = p^2 \mathbb{E}_p(z) & \text{if } z \text{ is a } z \text{ is
$$

$$
d y d z =
$$
\n
$$
\begin{array}{ll}\n\text{Ritus Method} & (\gamma \cdot \Pi)^2 \mathbb{E}_p(z) = p^2 \mathbb{E}_p(z) \\
& \times z^2 q^{2+2} \text{ B(x)} = Be^{-\hat{\alpha}x} \implies W(x) = -\frac{B}{\hat{\alpha}} \left(e^{-\hat{\alpha}x} - 1 \right) \\
& k_n = \hat{p}_2^2 - (\hat{p}_2 - n\hat{\alpha})^2 \underbrace{\sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{
$$

$$
x+3y
$$

$$
x^2dz =
$$

$$
-\int\limits_{0}^{n}dx
$$

$$
\mathbf{y} = \mathbf{z} \mathbf{z} \mathbf{z} + \mathbf{y} \mathbf{z} \mathbf{z} + \mathbf{y} \mathbf{z} \mathbf{z} \mathbf{z}
$$
\n
$$
\mathbf{y} = \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} + \mathbf{y} \mathbf{z} \mathbf{z} \mathbf{z} + \mathbf{y} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} + \mathbf{y} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z}
$$
\n
$$
\mathbf{y} = \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} + \mathbf{y} \mathbf{z} \mathbf{z} \mathbf{z} + \mathbf{y} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} + \mathbf{y} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z}
$$
\n
$$
\mathbf{y} = \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} + \mathbf{y} \mathbf{z} \mathbf{z} \mathbf{z} + \mathbf{y} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} + \mathbf{y} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z}
$$
\n
$$
\mathbf{y} = \mathbf{z} \mathbf{z}
$$
\n
$$
\mathbf{y} = \mathbf{z} \mathbf{z}
$$
\n
$$
\mathbf{y} = \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{
$$

 $x = 2y^2 + 3$

Ritus Method

Ritus Method

Perpendicular magnetic field (Landau-like gauge)

$$
[-\partial_x^2+(p_2+e{\mathcal W}_0(x))^2-e\sigma{\mathcal W}_0'(x)]F_{k,p_2,\sigma}=kF_{k,p_2,\sigma}
$$

● Second Order SUSY for these fields Y. Concha, E. Díaz-Bautista, AR, Phys. Scr. 97, 095203 (2022)

 $\mu = \rho_{\rm{tot}}$

 $V: Z=10(x+3y),$
 $x=0, y=0, z=$

 40.2

 $2 > 10 (x+3y),$
 $x=0, y=0, z=$

 (b)

Y. Concha, E. Díaz-Bautista, AR, Phys. Scr. 97, 095 203 (2022)

 (a)

Ritus Method

Y. Concha, E. Díaz-Bautista, AR, Phys. Scr. 97, 095203 (2022)

 $\mu = \frac{\rho}{\epsilon}$

V:
$$
z=10(x+3y)
$$
,
 $x=0, y=0, z=$

 $1 - x$ 10(x+3g)
 $1 - x$ 10(x+3g)

 $\frac{3}{244y^2}$

 $V: Z=10(x+3y), x+1$
 $x=0, y=0, z=0$

Final Remarks 05

Good to be in vacations while working!

 $x+3y$
 x^2 d z =

 $= \int dx$

n-th Latin American Workshop on Electromagnetics Effects in QCD

 $V: Z=10(x+3y),$
 $x=0, y=0, z=$

