

Table of contents

01 Fundamentals

From SUSY to SUSY-QM

Dirac Theory

02

Examples with planar fermions

03 Graphene

Ø

Ritus Propagator

0 $\frac{d}{d} = \frac{y}{y} = \cos 2x^2$ $y = \cos (2x - T_1/3) + 1$ f(-a)

At the interface of High Energy and Condensed Matter Physics

fdx + J dy

1x Soly Sx2 dz =

3, X=5 24 4 y2 2+ 4 y2

V: Z = 10(x+3y), x+0 X = 0, y=0, Z=0

(x)

01 Fundamentals

SUSY and SUSY-QM

Standard Model of Particle Physics

Most successful theory. Many free parameters.

×

142-Rs

0

a

-a

Great success with many free parameters

fdy

	Measurement	Pull	-3-2-10123	
m _z [GeV]	91.1871 ± 0.0021	.08	1	
F _z [GeV]	2.4944 ± 0.0024	56		
	41.544 ± 0.037	1.75		
R,	20.768 ± 0.024	1.16	_	
A.0.4	0.01701 ± 0.00095	.80	-	
A.	0.1483 ± 0.0051	.21		
A.	0.1425 ± 0.0044	-1.07	-	
sin ² 0 ^{leat}	0.2321 ± 0.0010	.60	-	
m _w [GeV]	80.350 ± 0.056	- 62		
Rp	0.21642 ± 0.00073	.81		
	0.1674 ± 0.0038	-1.27	-	
R. A%	0.0988 ± 0.0020	-2.20		
A	0.0692 ± 0.0037	-1.23	_	
Α,	0.911 ± 0.025	95	-	
A.	0.630 ± 0.026	-1.46	_	//
sin ² e ^{legt}	0.23099 ± 0.00026		_	//
sin ² 0 _w	0.2255 ± 0.0021	1.13	-	1
	80.448 ± 0.052	1.02		
100 M 100	174.3 ± 5.1	.22		
	0.02804 ± 0.00065			
			3210123	
				6

= 1

Grand Unification

T

Unification of the fundamental interactions

- Almost the same strength
- Pairwise unification
- Can there be exact unification?

SUSY comes to rescue

5=2

Minimal Supersymmetric Standard Model

fdy

5=2

Minimal Supersymmetric Standard Model

fdy

X=242+3

SUSY is broken

- How is SUSY broken?
- SUSY-QM
- Beyond the MSSM

From high-energy physics to other realizations

U - Ply

y'= cos2r y1= cosri

y =

SUSY-QM

1x Soly Sx2 dz =

3, X=5 24 4 y2 2+ 4 y2

V: Z = 10(x+3y), x+0 X = 0, y=0, Z=0

y=f(x)

02 Dirac Theory

Planar Fermions

Relativistic Wave Equation

Trying to unify QM and SR, the Klein Gordon equation emerged as the first attempt

- Negative Energy States
- Probabilistic Interpretation of the wave function

Need a better idea!

 $(\partial_\mu\partial^\mu+m^2)\phi=0$

 $ho \sim \phi^* \partial_t \phi - \phi \partial_t \phi^*$

Y =

y'= cos2x

U - Cla

V: Z=10(x+3y), X=0, y=0, Z=

Relativistic Wave Equation

U - Plus

Dirac:

- Need a Hamiltonian linear in space derivatives
- Its squared is equivalent to the KG equation
- Has a neat probabilistic interpretation
- No negative energy states

Oops!

 $H_D = ec lpha \cdot ec p + eta m$

 $\alpha_i, \beta \text{ matrices}$

 $E=m_{0},m_{0},-m_{0},-m_{0}$

 $|\psi|^2 \geq 0$ $\psi = \left[\begin{array}{c} \vdots \end{array} \right],$

V: Z=10(x+3y), X=0, Y=0, Z=

ps!

X=242+3

Relativistic Wave Equation

1 u - Plus

Dirac:

- QM+SR = antimatter
- More intelligent equation that its creator

 $\psi^<_{\uparrow\downarrow},$

 $\psi^{>}_{\uparrow\downarrow},$

V: Z=10(x+3y), X=0, y=0, Z=

Relativistic Wave Equation in 2D

dydz =	$H_D = \sigma_x p_x + \sigma_y p_y +$	$\sigma_3 m = \cos \lambda r$
	Dirac:	$\overline{\mathbf{n}}$
X=242+3	2x2 Dirac Matrices	
	2 Irreducible inequivalent representations	· · · · · · · · · · · · · · · · · · ·
5 X	1 Spin orientation in each	$y_1 = cosr'$
1	Mass breaks parity	y =
	• No chiral symmetry $\gamma_5=\pm i I$	
\frown		
◦ <u> </u>	¥1 \\:	Z = 10(x+3y), X = 0, y = 0, Z =
	$\int u = c f(x)$	X = 0, y = 0, z =

Relativistic Wave Equation in 2D

dydz

X=242+3

Relativistic Wave Equation in 2D

Graphinos

- 4x4 Dirac Matrices
- Uniform magnetic field
- Dirac and Haldane masses

SHernández Ortiz, G Murguía, AR JPCM24(2012)015304

X=0,

y =

Figure 2. Action of the operators \mathcal{Z}_{\pm} in the reducible representation of graphinos. These operators reveal an exact SUSY-QM structure in the massless limit and hardly break such a structure if a Haldane mass term is included.

U - Plus

1x Soly Sx2 dz =

3, X=5 24 4 y2 2+ 4 y2

V: Z=10(x+3y), x+0 X=0, y=0, Z=0

03 Graphene

The Age of Quantum Materials

Graphene

U - Plus

- 1 atom thick layer
- Genuine 2D crystal
- Remarkable properties
- Low energy, massless Dirac eq.

 $H_g = v_F ec{\sigma} \cdot ec{p}$

Figure 1. Crystallographic structure of graphene (left) and the Dirac points in the reciprocal k-space (right). The lattice parameters are $a_0 = 1.42$ Å, $\mathbf{a}_1 = a_0 \sqrt{3}(1/2, \sqrt{3}/2)$ and $\mathbf{a}_2 = a_0 \sqrt{3}(-1/2, \sqrt{3}/2).$

Propagator

- Non-diagonal in momentum space
- Spectral representation
- Schwinger Method
- Ritus method
- Very few field configurations known

U - Ply

y =

V: Z=10(x+3y), X=0, y=0, Z=

$$x^2 dz =$$

Ritus Method

y'= COSLY **Ritus Method** $(\gamma \cdot \Pi)^2 \mathbb{E}_p = p^2 \mathbb{E}_p$ Eigenfunctions of $(\gamma \Pi)^2$ X=292+3 $\int \mathrm{d}^d z \, ar{\mathbb{E}}_{p'}(z) \mathbb{E}_p(z) \quad = \mathbb{I} \, \delta(p-p'),$ **Ritus functions** $y_1 = cosx'$ $\int \mathrm{d}^d p \, \mathbb{E}_p(z') ar{\mathbb{E}}_p(z) \quad = \mathbb{I} \, \delta(z-z'),$ y = $\int \mathbf{u}_{F-r} = \int \mathrm{d}^d p \, \mathbb{E}_p(z) \, \frac{1}{\gamma \cdot \bar{p} - m} \, \overline{\mathbb{E}}_{p'}(z')$ $\forall : \ \mathbf{z} = 10 \, (\mathbf{x} + 3 \, \mathbf{y}), \quad \mathbf{y} = 0, \ \mathbf{z} = 0, \ \mathbf{y} = 0, \ \mathbf{z} = 0, \ \mathbf{z}$ Propagator

dydz

X=242+3

Ritus Method

Ritus Method

Perpendicular magnetic field (Landau-like gauge)

$$[-\partial_x^2+(p_2+e\mathcal{W}_0(x))^2-e\sigma\mathcal{W}_0'(x)]F_{k,p_2,\sigma}=kF_{k,p_2,\sigma}$$

Uniform Magnetic Field and exponentially decaying magnetic field
 G. Murguía, A. Sánchez, E. Reyes, AR, Am. J. Phys. 78, 700–707 (2010)

Y =

$$\frac{dyd_{2}}{x} = \frac{1}{Ritus Method} (\gamma \cdot \Pi)^{2} \mathbb{E}_{p}(z) = p^{2} \mathbb{E}_{p}(z)$$

$$E_{p,\sigma}(z) = N_{\sigma} e^{-i(p_{\sigma}t - p_{2}y)} F_{k,p_{2}}^{\sigma}(x)$$

$$[\partial_{x}^{2} - (-p_{2} + eW(x))^{2} + e\sigma W'(x) + k] F_{k,p_{2}}^{\sigma}(x) = 0,$$

$$\frac{y}{y} = \frac{1}{2} \frac{1}{2} \frac{y}{y} = \frac{1}{2} \frac{1$$

$$\begin{aligned} dy dz &= \\ \text{Ritus Method} \quad (\gamma \cdot \Pi)^2 \mathbb{E}_p(z) = p^2 \mathbb{E}_p(z) \\ &= p^2 (2^{2} + 3) B(x) = Be^{-\hat{\alpha}x} \quad \Rightarrow \quad W(x) = -\frac{B}{\hat{\alpha}} \left(e^{-\hat{\alpha}x} - 1 \right) \\ &= k_n = \hat{p}_2^2 - (\hat{p}_2 - n\hat{\alpha})^2 \\ &=$$

$$x^2 dz =$$

$$yd_{2} = Ritus Method (\gamma \cdot \Pi)^{2} \mathbb{E}_{p}(z) = p^{2} \mathbb{E}_{p}(z)$$

$$x = 2y^{2} + 3 \quad \langle \bar{\psi}\psi \rangle = Tr\{iS(z, z)\}, \qquad \langle \bar{\psi}\psi \rangle_{\mathcal{A}} = i \oint d^{3}p \frac{m}{\bar{p}^{2} - m^{2}} [|E_{p,+1}(z)|^{2} + |E_{p,-1}(z)|^{2}]$$

$$(\bar{\psi}\psi)_{\mathcal{A}} = \frac{m\hat{\alpha}^{2}}{2\pi} \Big\{ \sum_{s=0}^{\infty} \frac{1}{|m|} \Big(\frac{s}{\Gamma(2s+1)} \Big) e^{-\varrho} e^{2s} [L_{0}^{2s}(\varrho)]^{2} + \sum_{n=1}^{\infty} \sum_{s=n+1}^{\infty} \frac{e^{-\varrho} e^{2(s-n)}}{\sqrt{\hat{\alpha}^{2}(2sn-n^{2}) + m^{2}}}$$

$$\times \Big[\Big(\frac{n!(s-n)}{\Gamma(2s-(n-1))} \Big) [L_{n}^{2(s-n)}(\varrho)]^{2} + \Big(\frac{(n-1)!(s-n)}{\Gamma(2s-n)} \Big) [L_{n-1}^{2(s-n)}(\varrho)]^{2} \Big] \Big], \qquad \forall i = e^{-\hat{\alpha}x} \operatorname{sgn}(m),$$

$$X = 0, Y = 0, Z = 10 (x+3y), X = 0$$

X=242+3

Ritus Method

Ritus Method

Perpendicular magnetic field (Landau-like gauge)

$$[-\partial_x^2+(p_2+e\mathcal{W}_0(x))^2-e\sigma\mathcal{W}_0'(x)]F_{k,p_2,\sigma}=kF_{k,p_2,\sigma}$$

Second Order SUSY for these fields
 Y. Concha, E. Díaz-Bautista, AR, Phys. Scr. 97, 095203 (2022)

U - Cla

V: Z=10(x+3y), X=0, y=0, Z=

Y. Concha, E. Díaz-Bautista, AR, Phys. Scr. 97, 095203 (2022)

Y. Concha, E. Díaz-Bautista, AR, Phys. Scr. 97, 095203 (2022)

U - Plus

V: Z=10(x+3y), X=0, y=0, Z=

1× 5 dy 5×2 dz =

3, X=5 24 4 y2 2+ 4 y2

V: Z=10(x+3y), x+0X=0, y=0, Z=0

05 Final Remarks

Good to be in vacations while working!

 $x^2 dz =$

= Šdx

n-th Latin American Workshop on Electromagnetics Effects in QCD

V: Z=10(x+3y), X=0, y=0, Z=

