

Measurement of the B⁺ differential cross section as a function of transverse momentum and multiplicity in pPb collisions at 8.16 TeV

Reunión Anual de la División de Partículas y Campos 2024 Ciudad de México. June 05, 2024.

Camilo J. Torres Castaño (BUAP-FCFM) Dr. Jhovanny Mejía Guisao, Dra. Irais Bautista Guzman, Dr. Rogelio Reyes-Almanza, Dr. Heriberto Castilla Valdez

RADPyC2024

- 1. Motivation and previous results: Some insights in b-mesons nuclear modification factor and multiplicity studies.
 - 1.1. Study of B meson production in pPb collisions at 5.02 TeV using exclusive hadronic decays
 - 1.2. Nuclear modification factor in pPb collisions for B+ mesons as function of y and as a function of pT
 - Multiplicity dependence of charm baryon and meson production in pPb collisions at 8.16 1.3. TeV
- Measurement of the B⁺ differential cross section as a function of transverse momentum and multiplicity in pPb collisions at 8.16 TeV
 - 2.1. Data sets and selection details
 - 2.2. Dimuon trigger
 - 2.3. Charged-particle multiplicity
 - Invariant mass distribution 2.4.
 - 2.5. Monte Carlo and Efficiency
 - Differential cross section 2.6.
 - 2.7. B+ cross section in multiplicity clases
- Conclusions and next steps 3.

RADPyC2024

Motivation and previous results: Some insights in b-mesons nuclear modification factor and multiplicity studies.

The schematic phase diagram of QCD in terms of T, showing the QGP state. [1]

RADPyC2024

Motivation and previous results: Some insights in b-mesons nuclear modification factor and multiplicity studies.

The schematic phase diagram of QCD in terms of T, showing the QGP state. [1]

The nuclear modification factor is a quantity that measures the production suppression due to in-medium collective effects. [2]

RADPyC2024

Study of B meson production in pPb collisions at 5.02 TeV using exclusive hadronic decays

RADPyC2024

[3] CMS HIN-14-004 Phys. Rev. Lett. 116 (2016) 032301

Study of B meson production in pPb collisions at 5.02 TeV using exclusive hadronic decays

- The nuclear modification factors of the three B mesons do not show evidence for modification of pPb data compared to the FONLL reference
- These results provide a baseline for the study of in-medium b quark energy loss in PbPb collisions.

RADPyC2024

[4] CMS HIN-14-004 Phys. Rev. Lett. 116 (2016) 032301

Nuclear modification factor in pPb collisions for B+ mesons as function of y and as a function of pT

RADPyC2024

[4] LHCb Collaboration Phys. Rev. D 99, (2019) 052011

Nuclear modification factor in pPb collisions for B+ mesons as function of y and as a function of pT

• Forward-to-backward nuclear modification factors indicate a significant nuclear suppression at positive rapidity.

RADPyC2024

[4] LHCb Collaboration Phys. Rev. D 99, (2019) 052011

Multiplicity dependence of charm baryon and meson production in pPb collisions at 8.16 TeV

RADPyC2024

[5] <u>CMS-PAS-HIN-21-016</u>

Multiplicity dependence of charm baryon and meson production in pPb collisions at 8.16 TeV

• Evidence of charm hadronization mechanism possibly in presence of a dense medium produced in high-multiplicity pPb collisions.

RADPyC2024

[5] <u>CMS-PAS-HIN-21-016</u>

Camilo J. Torres

Multiplicity dependence of charm baryon and meson production in pPb collisions at 8.16 TeV

- Evidence of charm hadronization mechanism possibly in presence of a dense medium produced in high-multiplicity pPb collisions.
- Reported results may indicate different event multiplicity evolution of hadronization mechanism for charm quarks than light flavor strange quarks

RADPyC2024

[5] <u>CMS-PAS-HIN-21-016</u>

[6] <u>CMS-PAS-HIN-22-001</u>

Measurement of the B⁺ differential cross section as a function of transverse momentum and multiplicity in pPb collisions at 8.16 TeV

<u>CMS-PAS-HIN-22-001</u>

[6] <u>CMS-PAS-HIN-22-001</u>

Measurement of the B⁺ differential cross section as a function of transverse momentum and multiplicity in pPb collisions at 8.16 TeV

CMS-PAS-HIN-22-001

[6] <u>CMS-PAS-HIN-22-001</u>

Measurement of the B⁺ differential cross section as a function of transverse momentum and multiplicity in pPb collisions at 8.16 TeV

Recent observations of QGP-like phenomena in small collision systems, such as pp and pPb collisions, challenge our understanding of high-energy heavy ion physics.

CMS-PAS-HIN-22-001

RADPyC2024

CMS-PAS-HIN-22-001

RADPyC2024

CMS-PAS-HIN-22-001

 $B^+ \to J/\psi K^+$ $J/\psi \to \mu^+ \mu^-$ J/ψ Pb

J/ψ selection details:

- Prob(vtx) > 0.01 (1%)
- 2.9 < $Mass(J/\psi)$ < 3.3 GeV
- $pT(\mu) > 2.0 \text{ GeV}, |\eta(\mu)| < 2.4$
- Soft Muon ID

CMS-PAS-HIN-22-001

 $B^+ \to J/\psi K^+$ $J/\psi \to \mu^+ \mu^-$ J/ψ Pb

J/ψ selection details:

- Prob(vtx) > 0.01 (1%)
- $2.9 < Mass(J/\psi) < 3.3 \text{ GeV}$
- $pT(\mu) > 2.0 \text{ GeV}, |\eta(\mu)| < 2.4$
- Soft Muon ID

Datasets

- /PADoubleMuon/PARun2016A-PromptReco-v1/AOD
- /PADoubleMuon/PARun2016B-PromptReco-v1/AOD
- /PADoubleMuon/PARun2016C-PromptReco-v1/AOD
- /PADoubleMuon/PARun2016D-PromptReco-v1/AOD

RADPyC2024

CMS-PAS-HIN-22-001

 $B^+ \to J/\psi K^+$ $J/\psi \to \mu^+ \mu^-$ J/Ψ Pb

Dimuon trigger

Trigger <u>HLT PAL1DoubleMuOpen v1</u>

<u>CMS-PAS-HIN-22-001</u>

Camilo J. Torres

Dimuon trigger

Trigger

• HLT PAL1DoubleMuOpen v1

Trigger details:

- $|Max \eta| < 2.4$
- $\min pT = 0.0$

<u>CMS-PAS-HIN-22-001</u>

Camilo J. Torres

Dimuon trigger

Trigger

• <u>HLT PAL1DoubleMuOpen v1</u>

Trigger details:

- $|Max \eta| < 2.4$
- min pT = 0.0
- This trigger requires two muon candidates found in the muon detectors at level-1 (L1) trigger with loosest possible selections to maximize the detection efficiency. During 2016 pPb run, this trigger was operated without any pre-scale.

RADPyC2024

CMS-PAS-HIN-22-001

Camilo J. Torres

y 2(2(

Dimuon trigger

Trigger

• <u>HLT PAL1DoubleMuOpen v1</u>

Trigger details:

- $|Max \eta| < 2.4$
- $\min pT = 0.0$
- This trigger requires two muon candidates found in the muon detectors at level-1 (L1) trigger with loosest possible selections to maximize the detection efficiency. During 2016 pPb run, this trigger was operated without any pre-scale.

CMS-PAS-HIN-22-001

year	part of the run	$L_{\rm int} \ ({\rm nb}^{-1})$
2016	for pPb	62.65
2016	for Pbp	111.92
	Total luminosity	174.57

• Number of charged particles produced in a collision.

Multiplicity class	Fraction (%)	$\langle N_{ m trk} angle$	$\langle N_{\rm trk}^{\rm corrected} \rangle$
$2 \le N_{\rm trk} < 250$	100.0	88	102 ± 2
$2 \le N_{ m trk} < 60$	27.5	42	49 ± 1
$60 \leq N_{ m trk} < 85$	24.1	72	84 ± 2
$85 \le N_{\rm trk} < 110$	20.6	96	112 ± 3
$110 \le N_{\rm trk} < 250$	27.7	140	163 ± 4

CMS-PAS-HIN-22-001

• Number of charged particles produced in a collision.

Multiplicity class	Fraction (%)	$\langle N_{ m trk} angle$	$\langle N_{\rm trk}^{\rm corrected} \rangle$
$2 \le N_{ m trk} < 250$	100.0	88	102 ± 2
$2 \leq N_{ m trk} < 60$	27.5	42	49 ± 1
$60 \leq N_{ m trk} < 85$	24.1	72	84 ± 2
$85 \le N_{\rm trk} < 110$	20.6	96	112 ± 3
$110 \le N_{\rm trk} < 250$	27.7	140	163 ± 4

• Charged particles with lyl< 2.4 and pT> 0.4 GeV.

CMS-PAS-HIN-22-001

• Number of charged particles produced in a collision.

Multiplicity class	Fraction (%)	$\langle N_{ m trk} angle$	$\langle N_{\rm trk}^{\rm corrected} \rangle$
$2 \le N_{ m trk} < 250$	100.0	88	102 ± 2
$2 \le N_{ m trk} < 60$	27.5	42	49 ± 1
$60 \leq N_{ m trk} < 85$	24.1	72	84 ± 2
$85 \le N_{\rm trk} < 110$	20.6	96	112 ± 3
$110 \le N_{\rm trk} < 250$	27.7	140	163 ± 4

- Charged particles with |y|< 2.4 and pT> 0.4 GeV.
- Track reconstruction implies a detector effect. Tracking efficiency correction is needed

RADPyC2024

CMS-PAS-HIN-22-001

 $\epsilon_{\rm trk}(\eta, p_{\rm T}) = \frac{AE}{1 - F}$

• Number of charged particles produced in a collision.

Multiplicity class	Fraction (%)	$\langle N_{ m trk} angle$	$\langle N_{\rm trk}^{\rm corrected} \rangle$
$2 \le N_{ m trk} < 250$	100.0	88	102 ± 2
$2 \leq N_{ m trk} < 60$	27.5	42	49 ± 1
$60 \leq N_{ m trk} < 85$	24.1	72	84 ± 2
$85 \le N_{ m trk} < 110$	20.6	96	112 ± 3
$110 \le N_{\rm trk} < 250$	27.7	140	163 ± 4

- Charged particles with |y|< 2.4 and pT> 0.4 GeV.
- Track reconstruction implies a detector effect. Tracking efficiency correction is needed

First B+ meson studies at different charged particle multiplicities in pPb collisions.

RADPyC2024

CMS-PAS-HIN-22-001

 $\epsilon_{\rm trk}(\eta, p_{\rm T}) = \frac{AE}{1 - E}$

Camilo J. Torres

Invariant mass distribution

RADPyC2024

CMS-PAS-HIN-22-001

Invariant mass distribution

- B+ yields are obtained by unbinned maximum likelihood.
- Signal modeled by: double-gaussian; backgroud by: error function and exponential.
- Results are obtained for 6 pT bins and 4 multiplicity classes.

RADPyC2024

CMS-PAS-HIN-22-001

Invariant mass distribution

- B+ yields are obtained by unbinned maximum likelihood.
- Signal modeled by: double-gaussian; backgroud by: error function and exponential.
- Results are obtained for 6 pT bins and 4 multiplicity classes.

RADPyC2024

CMS-PAS-HIN-22-001

Monte Carlo and Efficiency

Monte Carlo

- MC samples with PYTHIA, EVTGEN, PHOTOS, EPOS and GEANT 4.
- Correction with tag and probe scale factors derived from efficiency ratio between the data and the MC in J/ψ analysis for each muon (RECO).
- Slightly discrepancies between data and MC in kinematic distributions.
 Corrected with reweighting (RECO).

CMS-PAS-HIN-22-001

Monte Carlo and Efficiency

Monte Carlo

- MC samples with PYTHIA, EVTGEN, PHOTOS, EPOS and GEANT 4.
- Correction with tag and probe scale factors derived from efficiency ratio between the data and the MC in J/ψ analysis for each muon (RECO).
- Slightly discrepancies between data and MC in kinematic distributions. Corrected with reweighting (RECO).

Total Efficiency

Acceptance ANumber of events passing the so called pre-filtercuts is divided by the number of events generated.

Reconstruction Efficiency ϵ_R Number of reconstructed events after the full selection divided with respect to the number of generated b decays.

CMS-PAS-HIN-22-001

$\epsilon = A \times \epsilon_R$

Differential cross section

CMS-PAS-HIN-22-001

$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}} = \frac{1}{2} \frac{1}{\Delta p_{\mathrm{T}}} \frac{N(p_{\mathrm{T}})}{\epsilon \mathcal{BL}}$

• $N(p_{\rm T})$ is the measured yield. • *B* product world-average branching fractions. • ϵ is the total efficiency. • \mathcal{L} is the integrated luminosity.

Differential cross section

RADPyC2024

CMS-PAS-HIN-22-001

$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}} = \frac{1}{2} \frac{1}{\Delta p_{\mathrm{T}}} \frac{N(p_{\mathrm{T}})}{\epsilon \mathcal{BL}}$

N(p_T) is the measured yield.
B product world-average branching fractions.
E is the total efficiency.
L is the integrated luminosity.

Differential cross section

The theoretical predictions of FONLL are in good agreement with the measurements

RADPyC2024

CMS-PAS-HIN-22-001

$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}} = \frac{1}{2} \frac{1}{\Delta p_{\mathrm{T}}} \frac{N(p_{\mathrm{T}})}{\epsilon \mathcal{BL}}$

• $N(p_{\rm T})$ is the measured yield. • *B* product world-average branching fractions. • ϵ is the total efficiency. • \mathcal{L} is the integrated luminosity.

B+ cross section in multiplicity clases

RADPyC2024

CMS-PAS-HIN-22-001

Cross section vs. multiplicity.Total uncertainties are shown.

B+ cross section in multiplicity clases

RADPyC2024

CMS-PAS-HIN-22-001

Cross section vs. multiplicity.Total uncertainties are shown.

For the first time in pPb collisions.

<u>CMS-PAS-HIN-22-001</u>

Conclusions

• B+ differential cross section measurement is in good agreement with the theoretical predictions.

CMS-PAS-HIN-22-001

Conclusions

- B+ differential cross section measurement is in good agreement with the theoretical predictions.
- First measurement of B+ differential cross section in multiplicity classes in pPb collisions.

CMS-PAS-HIN-22-001

Conclusions

- B+ differential cross section measurement is in good agreement with the theoretical predictions.
- First measurement of B+ differential cross section in multiplicity classes in pPb collisions.

Next steps

• Studying the suppression via the ratios of Nuclear Modification Factors and multiplicity dependence.

<u>CMS-PAS-HIN-22-001</u>

Conclusions

- B+ differential cross section measurement is in good agreement with the theoretical predictions.
- First measurement of B+ differential cross section in multiplicity classes in pPb collisions.

Next steps

RADPyC2024

- Studying the suppression via the ratios of Nuclear Modification Factors and multiplicity dependence.
- Publishing the article in next weeks with these results: We are in the Final Reading!

<u>CMS-PAS-HIN-22-001</u>

Bibliography

[1] Pasechnik, R., Šumbera, M., "Phenomenological Review on Quark-Gluon Plasma: Concepts vs. Observations", Universe 2017. DOI: https://doi.org/10.3390/universe3010007 [2] Velkovska, J., Veres, G., "CMS studies the quark–gluon plasma", <u>CERN Courier 2012</u>. [3] CMS Collaboration, "Study of B Meson Production in p+Pb Collisions at 5.02 TeV Using Exclusive Hadronic Decays". Phys. Rev. Lett. 116 (2016) 032301 [4] LHCb Collaboration, "Measurement of B +, Bd and Λb production in pPb collisions at 8.16 TeV", <u>*Phys. Rev. D* 99 (2019) 052011</u> [5] CMS Collaboration, "Multiplicity dependence of charm baryon and meson production in pPb collisions at 8.16 TeV". <u>CMS-PAS-HIN-21-016</u> (2023) [6] CMS Collaboration, "Measurement of the B+ differential cross section as a function of transverse momentum and multiplicity in pPb collisions at 8.16 TeV". CMS-PAS-HIN-<u>22-001</u> (2023)

RADPyC2024

Thanks for listening!

Back-up

RADPyC2024

Summary table of differential cross sections of B+ in pPb

pt	$d\sigma/dp_{\rm T}$	stat. er
(GeV)	$(\mu b \ GeV^{-1})$	(µb GeV
3 – 7	1422.79	157.1
7 - 10	647.10	38.61
10 - 15	202.10	7.24
15 – 20	51.41	2.02
20 – 30	11.25	0.47
30 – 50	1.35	0.09

RADPyC2024

