

Exploring isotropic events in pp collisions using the flattenicity event shape variable or searching for hedgehogs at the LHC

Dr. Leonid Serkin

Departamento de Física de Altas Energías Instituto de Ciencias Nucleares (ICN-UNAM), México

Annual Meeting of the Division of Particles and Fields of the Mexican Physical Society Unidad de Seminarios "Dr. Ignacio Chávez", Mexico City, Mexico, 5 June 2024

Hedgehogs (erizos) at the LHC?

Introduction to "hedgehog-like" events

Looking for the presence of events with a very
extended structure of low momentum tracks filling in a uniform way the pseudorapidity-azimuth (η-φ) space.

- First dedicated analysis of highest transverse energy (E_T) events seen in the UA1 detector at the SppS collider at CERN in proton-antiproton collisions at $\sqrt{s} = 630$ GeV
- Several isotropic events with $E_T \sim 210$ GeV in UA1 observed (even tested for top quark production), no evidence for non-QCD mechanism for these events.
- Similar unusual events observed in p-pbar collisions at $\sqrt{s} = 1.8$ TeV by CDF's Run 1 detector with more than 60 charged particles and $E_T \sim 320$ GeV
- Called "hedgehog-like" events by C. Quigg
- Taken for granted that in these events with high E_T perturbative aspects of QCD dominate the event properties: multi-jet events.

<u>UA1 Collaboration, Zeit. für Phys. C,</u> <u>V. 36, p. 33 (1987)</u>

Geometry of the final state: event shapes

• Event shape variables: instrumental in classifying the **geometrical and topological configurations** of the final-state particles produced in high-energy collisions at PETRA, ISR, SppS, SLD, LEP, HERA, Tevatron and the LHC.

Commonly used event shape variables

• Study the isotropy of the final-state energy distribution by defining the **linearized sphericity tensor of the event**, where the Greek indices denote the x, y, and z components of the momentum of the charged particle *i*. The eigenvalues must satisfy the normalization condition: $\lambda_1 \ge \lambda_2 \ge \lambda_3$ and $\lambda_1 + \lambda_2 + \lambda_3 = 1$.

$$S^{\alpha\beta} = \frac{\displaystyle\sum_{i} p^{\alpha}_{i} p^{\beta}_{i}}{\displaystyle\sum_{i} |\vec{p}_{i}|^{2}} ,$$

$$A = \frac{3}{2}\lambda_3; \quad S = \frac{3}{2}(\lambda_2 + \lambda_3).$$

• Aplanarity (A) serves as a measure of how planar an event is. A balanced pencil-like event corresponds to A = 0, and an isotropic event corresponds to A = 1/2.

• **Sphericity (S)** quanties the isotropy of an event, representing the degree to which energy and momentum are evenly distributed in all directions. S= 0 denotes a balanced dijet event, and S = 1 for an isotropic event.

Commonly used event shape variables

• **Centrality**: a measure of how much of the event is contained within the central part of the detector; ranges between 0 and 1, where a pencil-like has C = 0 and a centrally contained event corresponds to C = 1.

$$C = \frac{\sum_{i} p_{T,i}}{\sum_{i} E_{i}},$$

$$T = 1 - \max_{\hat{n}} \frac{\sum_{i} |\vec{p}_{\mathrm{T},i} \cdot \hat{n}|}{\sum_{i} |\vec{p}_{\mathrm{T},i}|},$$

• **Transverse thrust**: a widely used event shape ranging from 0 for a pencil-like topology to 1/3 for a circularly symmetric distribution of particles in the transverse plane.

• Transverse spherocity: infrared and colliner safe event shape that ranges from $S_0 = 0$ for events with back-to-back multijet final states to $S_0 = 1$ for isotropic event topologies.

$$S_0 = \frac{\pi^2}{4} \min_{\hat{n}_s} \left(\frac{\sum_i |\vec{p}_{T,i} \times \hat{n}_s|}{\sum_i p_{T_i}} \right)^2.$$

Characterisation of high-multiplicity events

• Attempts to characterise these high-multiplicity events: use of event shapes, i.e. using transverse sphericity: $2\lambda_{2}^{xy}$ $\sum_{n=1}^{\infty} \frac{1}{n} \left[\frac{n^{2}}{n} + \frac{n}{n} \right]$

$$S_{\perp} = \frac{2\lambda_2^{xy}}{\lambda_1^{xy} + \lambda_2^{xy}} , \quad S^{xy} = \sum_i \frac{1}{|\vec{p}_{\mathrm{T},i}|^2} \begin{bmatrix} p_{x,i}^2 & p_{x,i} p_{y,i} \\ p_{x,i} p_{y,i} & p_{y,i}^2 \\ p_{x,i} p_{y,i} & p_{y,i}^2 \end{bmatrix}$$

• Both ALICE and ATLAS observed an under-estimation of isotropic events by MC generators at high charged multiplicity ($N_{ch} \ge 30$)

 Suggest that a very active underlying event (UE) is needed by the MC event generators in order to explain these high-multiplicity events

Characterisation of high-multiplicity events

• Attempts to characterise these high-multiplicity events: use of event shapes, i.e. using transverse sphericity: $2\lambda_{xy}^{xy}$ $\sum_{n=1}^{\infty} \frac{1}{\left[n^{2} - n^{2}\right]} = \frac{1}{\left[n^{2} - n^{2}\right]}$

$$S_{\perp} = \frac{2\lambda_2^{xy}}{\lambda_1^{xy} + \lambda_2^{xy}} , \quad S^{xy} = \sum_i \frac{1}{|\vec{p}_{\mathrm{T},i}|^2} \begin{bmatrix} p_{x,i}^2 & p_{x,i} p_{y,i} \\ p_{x,i} p_{y,i} & p_{y,i}^2 \end{bmatrix}$$

• Both ALICE and ATLAS observed an under-estimation of isotropic events by MC generators at high charged multiplicity ($N_{ch} \ge 30$)

✓ Suggest that a very active underlying event (UE) is needed by the MC event generators in order to explain these high-multiplicity events

• ALICE measurement shows that $< p_T >$ as a function of N_{ch} in isotropic events was found to be smaller than that measured in jet-like events, and that for jet-like events, the $< p_T >$ is over-estimated by PYTHIA 6 and 8 models.

Characterisation of high-multiplicity events

• Attempts to characterise these high-multiplicity events: use of event shapes, i.e. using transverse sphericity: $2\lambda_{xy}^{xy}$ $\sum_{n=1}^{\infty} \frac{1}{[n^2 - n_{n=1}^{2}]} \frac{1}{[n^2 - n_{n=1}^{2}]}$

$$S_{\perp} = \frac{2\lambda_2^{xy}}{\lambda_1^{xy} + \lambda_2^{xy}} , \quad S^{xy} = \sum_i \frac{1}{|\vec{p}_{\mathrm{T},i}|^2} \begin{bmatrix} p_{x,i}^2 & p_{x,i} p_{y,i} \\ p_{x,i} p_{y,i} & p_{y,i}^2 \end{bmatrix}$$

• Both ALICE and ATLAS observed an under-estimation of isotropic events by MC generators at high charged multiplicity ($N_{ch} \ge 30$)

 Suggest that a very active underlying event (UE) is needed by the MC event generators in order to explain these high-multiplicity events

• ALICE measurement shows that $<p_T>$ as a function of N_{ch} in isotropic events was found to be smaller than that measured in jet-like events, and that for jet-like events, the $<p_T>$ is over-estimated by PYTHIA 6 and 8 models.

• Recently, a new event shape parameter, flattenicity, was proposed [<u>A. Ortiz</u>, <u>G. Paic, Rev. Mex. Fis. Suppl. 3 (2022) 4, 040911</u>] that allows one to identify and characterise high-multiplicity events with a quasi-isotropic distribution in a wide pseudorapidity range in proton-proton collisions.

• MC event generators are able to model "hedgehog" events, which opens the possibility to study their properties and find a potential way to experimentally trigger these events.

• The idea: find out how uniform the p_T of tracks is distributed in a given event!

Calculating flattenicity

11

• Build 10 x 12 grid in $(\eta - \phi)$ space:

Calculating flattenicity

• Build 10 x 12 grid in $(\eta - \phi)$ space:

- Event-by-event, the relative standard deviation of the $p_{\rm T}^{\rm cell}$ distribution is obtained.
- Events with isotropic distribution of particles ("hedgehogs") are expected to have $\rho = 1$.

$$\rho = 1 - \frac{\sqrt{\sum_{i=1}^{i=120} \left(p_{\rm T}^{\rm cell,i} - \langle p_{\rm T}^{\rm cells} \rangle \right)^2 / N_{\rm cell}^2}}{\langle p_{\rm T}^{\rm cells} \rangle},$$

Benchmark hedgehog-like structures

13

 $\rho = 0.98$

Flattenicity using different MC generators

• Two sets of inelastic events, including non-diffractive and diffractive components, were simulated using **Pythia 8.309**: ATLAS A14 tune and CMS CUETP8M1 tune.

• Herwig 7.2.0 with SoftTune based on the MMHT2014 LO PDF

• Recently released EPOS 4.0.0 framework using authors tune

 First, revise the performance of these MC models in reproducing the 13 TeV pp collision data.

Flattenicity using different MC generators

• Two sets of inelastic events, including non-diffractive and diffractive components, were simulated using **Pythia 8.309**: ATLAS A14 tune and CMS CUETP8M1 tune.

15

- Herwig 7.2.0 with SoftTune based on the MMHT2014 LO PDF
- Recently released EPOS 4.0.0 framework using authors tune
- Then, compare transverse spherocity and flattenicity for the 4 MC settings

• To demonstrate flattenicity's value in identifying isotropic events and its complementary information about the global shape of an event, we study its correlation with other event shape variables.

16

• Overall, there is clear indication that while flattenicity is related to other event shape variables, it **provides distinct and complementary** info of the isotropy of events

• Classify the **top 10%** of events in the distributions of flattenicity, transverse spherocity, and transverse thrust for each multiplicity class as **isotropic events**.

 Our observation is that for the highest charged-particle multiplicity class, only 3.1% of events meet all the three criteria: clearly indicates that flattenicity selects a different subset of events as compared to widely used S₀ and T.

Conclusions

18

Hedgehog events have never been seriously studied in pp collisions at the LHC.
These events are "rare" – but as rare as a top-quark–pair production!

• Flattenicity - the new event structure parameter - allows one to identify the hedgehog events and observe the evolution of events from jetty to hedgehog type.

• When compared to other event shape variables widely used in the literature, such as transverse spherocity, we found that flattenicity is able to **identify** a subset of isotropic events with **hedgehog-like structures**.

• Our results will be submitted to a journal asap, while experimental measurements using flattenicity are on their way!

• Next steps: analyze hedgehog events in data, so stay tuned!

Muchas gracias por su atención!

9

