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LAr TPC

@ Dual-phase Argon Time Projection
Chamber (TPC).

@ Light n, and Charge n, detection
combined to obtain Particle track.

@ Primary scintillation (S1) from
interaction in liquid.

@ Secondary light signal (S2) from
ionization electrons accelerated in
gas chamber.

@ Total quanta for electrons is constant
|n LAr (Lxe) : Nuclear Recoil
ng/E=1/W =(ne+ny)/E. :

Ampitud

Ly
¢
4

W =(19.5+£1)eV in LAr
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LAr Experiments now and future

ARIS experiment Dark Side 20k experiment
Global Argon Dark ~~ ADM DarkSide20k
Matter Collaboration [ sl LNGS

MiniCLEAN
NOLAB

CAPTAIN = "Cryogenic Apparatus for Precision
Tests of Argon Interactions with Neutrinos”

Nucl. Phys. B 1003 (2024) 116436
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@ Massive (nTon) detectors— larger signals — lower limits.

@ Systematic fluctuations for S; and S, signals will limit this
tendency.

@ Hence the importance of having a first principles theory for energy
reconstruction.

@ In addition for LAr, charge and light recombination occur:

Escape EL & .
Electroluminescence
Art-em —> e (diifty —>

52
“}\00 (82)
\D<\<L 1R ecombination

Energy  Excitation " ’ Scintillation \
=7 ——— Arf(-Ant) ———— X
Deposition (S1)
N
Biexcitonic Quenching

Observable

® N;: number of electron-ion pairs, A+ A— e+ AT + A*

® N : number of atoms excited, A+ A — A* + A*

® Biexcitonic Q, reduces two photons in to single photon (high
energies).
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Thomas-Imel box Model

e Diffusion equation for ions-electrons (N_ N.) Jaffe model, '
e — —aN_N,, N — UeF —aN,N_. (1)
@ Where «a is the recombination factor, ue electron mobility and F
the electric field of the TPC.
@ Each excited or ionized atom leads to one photon or electron.
@ = N+ Nex = Ny~ Ne, Ne = (1=r)N; & ny = Nex + rN;.
@ Hence, the fraction of ionizations predicted is

ne 1 1 Nia
¢ — _In(1 1—r=—-In(1 = :
Ni én( +§)7 r én( +§)) 5 432'ueF
N; = ERfn Where 8 = Nex/N; and f, = o

W@ +pB)’ Eg’

TAnn.Phys.IV, V42, pp.303 — 344, (1913). PRA 36, 614 (1987)
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lonization Efficiency fj

When a particle, (e.g. DM) interact with a nuclei the energy splits in

E, : Nuclear collisions. 2(v = CoE,)
E; : lonization (visible) energy [keV..] (7 — CoW(ne+ ny)pg).

@ , T
ewe (O (D) " O-=-
O X ®
lonization energy f— j
Deposited energy — | ' — SR.

@ g =€+ U=1+V,where gg is the recoil energy and
@ uis the energy to disrupt the atomic electron cloud.
@ This sets a cascade of slowing-down processes.

@ DM or CEVNS searches are affected by quenching.

2Using dimensionless units (Co = 16.26(1/keV)/ZZ5(2923 +2523) )
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Basic Integral Equation and Approximations

(Tn : Nuclear kinetic energy and Tg; electron kinetic energy.)

/dcrnve <E oY Te,> +7(To— U)+¥(E) +Zve Ta-Un)| =0
h\/—/ N~
. —/_/ B [¢]
total cross section A D

Lindhard’s (five) approximations

o
")
o
o

Neglect contribution to atomic motion
coming from electrons.

V (E-T,-LTe)
Neglect the binding energy, U = 0. (Now e
taken into account) Ne,
. = After 2 \ g
Energy transferred to electrons is small Before E@ v T =
compared to that transferred to recoil ions. @ ®\ electrons
Effects of electronic and atomic collisions V(Ti-0)

can be treated separately.
Th is also small compared to the energy E.
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Simplified equation with binding energy

@ We are going to use the integro-differential equation for atomic motion

deduced in the past work for Si.5.

W(e)

~1eSa(e) (1 + o) )'"(e)+se(e

/ dtf(t1/2>[v(e t/e)+v(t/e -

u)—v(e)],
@)

213/2

This work have been used for Skipper CCD’s: (DAMIC) PRD 109 (2024) 6,
062007 and (CONNIE) e-Print: 2403.15976.

m”n\\|nu|v|n\\|\\||w||m‘un|lm|m|

0.9
0.8
0.7
0.6
of 0.5
04
0.3
02
0.1

1

Zech
Dougherty
Chavarria
Antonella
Sattler
Gerbier
Agnese
5551(152020
Lindhard
_Best Fit-Model, AZ, £ =1.26
- Model AZ, £ =146

| *+0<e 40

S

=]
-

=)

L
10

1
10°

Electronic stopping Se with Coulomb
repulsion effects (Ziegler potential).

Bohr electron stripping for ions.

@ Electronic straggling effect.

Scaling factor & from Pauli principle,
instead of Lindhard semi-empirical
factor &, ~ Z1/8.

3Sarkis, Y. and Aguilar-Arevalo, A. and D’Olivo, J. C, PRA.107.062811
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Improvements for Se

@ We use Tilinin model to compute the electronic stopping power.
Se = (ée)va/Fi Veow(Ve)NedV, E =¢z(R)

@ We use data for e—Ar Momentum Transfer Cross Section (hard-Sphere
energy dependent potential model)

@ Valid for lower energies compare to Tilinin semi-classical aboroach.

u(E)

g
S s

|

1 — Tilinin-formul, h
E This Model
r - e-Atom, Data

L
10 E e-Ar, Data

e -Atom, OtherModels
o2l vl vl il vl
10°  10* 10° 107 10" 1 19

Figure 1: (left) Energy dependent binding energy, (right) oy for Ar-e.
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Physical interpretation of Scaling length &,

The scaling length measures how electrons are effectively excited,
with energy A, in the cascade collision process.

5 47 JiF_ A E(K)K?dk ) (k)2
34nE (k) J{F_p k2dk’ 2m

2/3
e

and Er = Urr /2.

For A — 0 then & — (5/3)%/2 ~ 2.15 (no electron excitation) and
A — kg we have & — 1 (total electron excitation).

Both limits are assume to be physically unreachable.

For Si, £, = 1.26, this gives A = 88.0 eV.

The cascade process and the recombination box are
entangled by the scale length.
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Fit to LAr Data £ = 1.34

@ Biexcitonic processes reduce M (measure).
@ Where f¥ = (ng+n,)W/Eg < (ne+ ny/fi))W/Eg.

1

M—f.f+(1—£)(ne/ER)W, fil= ——— .
n = Infi+(1—1£)(ne/ ER)W, T+ KereaSe

1
0.9 _ 5, 5,=1.34, U=19.00 (eV), x2Inq=(2.54e-03)/ (12) |
0sf- @ The Birks parameter can be
07f deduced from
vof—

uf0,5§— + Dark Side kBirks = 1/ < Se >=4.19
0A4§— <}
0.3;_ ° ARIS é ?ﬂ.#? L .
02F @ Where the average electronic
S stopping power.
10 1(;' J1 110 I 1(‘) 1$‘
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Recombination Parameters from first principles

@ Many authors 4, use five to ten parameters to describe charge
and light data.

@ In this study we are just going to use &, and the scale
recombination probability oy (universal) as fit parameters.

ogNiZ3(2rw)? ve
4u, (a2F)

o= 06023(2fw)2VF, g =

@ In addition, the same inter-atomic potential used for f, is going to
be the main tool to explain:

The energy and field dependence of the ratio Nex/N;.

Biexcitonic quenching.

Box model length a, as function of external field.

Field dependence of Thomas-Imel Box model parameter: & o< F~9 .

Sar ~ (0.4 —0.8) and 8xe ~ (0.04 —0.12).

4PRD 100,032002(2019),PRD 91,092007(2015)



Bates-Griffing Process (BGP)

@ For nuclear recoil W; = W(1+ Nex/N;) we can used the approach
given by Bates-Giriffing.

@ Passive electron, remains in its ground state during the interaction
with the target electron.

@ The projectile electron acts as a part of the incident nucleus and
appears to be a ‘heavy’ (classical) particle.

Passive Eleciron e~
(3 .
_

@ Active electrons, the projectile electron is removed from its ground
state.
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Semi Classical approach

@ We take the electron positioned at the top of valence orbital xp, centered
by the electron cloud distribution (nuclei x = 0).

Vee
e (o]
| y
X0 VeN
X

@ Electron-electron repulsion is given by Coulomb law, « 1/x.

@ Attraction potential of electron of atom 1 with the atom 2, defined by
distance (y).

@ To estimate the effective number of electrons in the collision, Bohr
stripping criteria (vion, < v/3VvF) is used to define Z* = N.

@ The total potential should be the average valence binding energy
Ejs =158 V.
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Potential Model

We assume that the interaction potential energy is given by Ziegler
semi-empirical potential

Z12,€°

W%z(x), a= a,0.885/(Z02 4 20-23).

<y V|y>=epz(x,8e) =

For the total energy the virial T. is used, < y | (V+ T) | y >= %25

For an ion with N electrons, we used the TF-Amaldi approach, where the ion
have a total positive charge (Z — N),

—Ze? Z—N
:(ée)zi/iax XZ(X)+( Z )

The equilibrium equation for BGP is,

&2
Epr/2 = e¢§(y7§e7N)/2+m’ y= \/X§+X2~

The energy of the two ions when the distance is x is,
E'/2 = epz((1.4836)x,&)/2, E' = W;/2 (Two atoms).
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Results for Ar, £ = 1.343

Zﬁ |+ SCENE
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Figure 2: Ratio B for LAr as function of energy, x?/3 =0.7
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Results for {e =1 and e =2.15
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LXe Eo = 1.189
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z
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Stark Effect for lons

@ When an electric field F is applied to a TPC.

@ Interacts producing a small deformation displacement d, of the
outer electron orbitals.

@ By applying first order perturbation theory (no degenerate) we can
compute the energy correction & to the potential

epz(x,8e) =<y |V |y>,
81 =< W | Voxt | >, Vext = £((Ee)?Pax,eF ) = +((£6)?/2axeF)cos(6).

@ Where Vet < ¢7(X,Ee) and r =~ ry + dcos(0).

@ We define the new electron-atom disturbed potential,
¢2(X,8e,Z, F) = 93(x,8e,Z,0) — 1.
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Results for LXe £ = 1.189
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Results for LAr &g = 1.343
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The box size is defined by
electrostatic length scale
(Dahl).

Screening Effects

Y. Sarkis (ICN-UNAM)

@ The box size is much larger than
the inter-atomic distance,

@ Screening effects are considerable.

@ We use Lindhard-Thomas-Fermi
model e(k.0) = 0, (1+ ).

@ This modify the potential is

2/3

¢§S(Xa, éea N) = (P;(Xa, ge’ N)e_Kxaée

2 — snzvalezne(AAr)
— 5 .
€ arDAr

@ Hence the box size is defined by
¢§3(Xa,§e, N) = ez/seaxF.
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Results for LAr &g = 1.343
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Figure 3: (left) Box size as function of the external TPC field, (right) TIB

parameter as function of the field.
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Results for LXe £ = 1.189
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Figure 4: (left) Box size as function of the external TPC field, (right) TIB
parameter as function of the field.
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Charge Yield LAr (96 V/cm)
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Charge Yield LAr (193 V/cm)
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Charge Yield LAr (293 V/cm)
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Charge Yield LAr (486 V/cm)
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Charge Yield LAr (1600 V/cm)
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Light Yield LAr (0 V/cm)
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Light Yield LAr (100 V/cm)
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Light Yield LAr (200 V/cm)
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Light Yield LAr (1000 V/cm)
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Conclusions

@ We present a first principles approach study based on an integral
equation for interactions in pure LAr.

© Incorporating the same procedure to compute the ionization
efficiency for Si, we get also a reasonable description for LAr.

© We give a physical interpretation of & that allow to describe the
Nex/N; ratio as function of energy and field.

@ With just two parameters, ¢ = 1.343 and ag = 1.4 x 107" we can
describe the complete recombination model and prove to be
consistent with data.

© The model for Charge yield have a better match with data than
NEST, thanks to Bates-Griffing process.

© This work can be useful as a prelude to study the Ge ionization
efficiency at low energies.
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Relevant DM Experiments

@ TPC’s detectors: LUX, XeNT, ZEPLIN, etc.
@ Bolometers: Super CDMS, EDELWEISS, etc.
@ CCD’s: DAMIC ang OSCURA.

P

WIMP Signals in a Dual-Phase Xenon Detector

These detectors detect signals by
ionization due to WIMP’s that

Figure 5: creditimages:M. Szydagis 2021 SCU AAP Conference https: //danicm. cnrs. fr/en/detector/,
https://supercdms.slac.stanford.edu/overview
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Relevant Experiments

@ CCD’s: CONNIE.

@ Ge detectors: CoGeNT, TEXONO, vGeN , CONUS.

@ Low-temp. bolometers: RICOCHET, MINER, v-cleus.

@ Noble liquid detectors: LAr Livermore, LXe, ITEP& INR, LXe
ZEPLIN-III.

@ Neutro

1
ST
170 +

LA ,
A A ((C &X%@%

Tests of Argon Interactions with Neutrinos®

https://coherent.ornl.gov/,Coherent Captain Mills: The Search for Sterile Neutrinos Ashley Elliott et al,
https://indico.cern.ch/event/MINER_MI_workshop.pdf,http://icra.cbpf.br/twiki/bin/login/CONNIE
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NSI; Vector and Axial-vector Interactions

@ Higher-dimensional Lagrangian effective operators.

A1 0 -2V2Gr Y. Y €27 (Va¥*Prvg) (GnPa)  (4)
apPq

@ CEVNS experiments are primarily sensitive to light vector and
scalar mediator models.
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Figure 6: JHEP04(2020)054
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Lindhard QF and Other Works

@ Lindhard used a primitive computer(DASK).
@ His formula just solved approximately Eq. (3).

| Ihs-rhs |
| lhs+rhs |

Ev

® Using Lindhard formula = Systematic error, large at lower
energies.

@ Other authors ®, try to include binding energy.

@ But fail to realize in changing the integration limit, reporting
nonphysical results.

@ One of the achievements of this work is to include in a consistent
mathematical and physical way the binding energy.

5PHYSICAL REVIEW D 91, 083509 (2015)
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First results for Si

# The high energy cutoff is due to the limitations of the constant
binding energy model.

« LE : . | :
B e Si ;
E —

! : o Zech 3
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Figure 7: QF measurements for Si, compared with Lindhard model, the
ansatz, and the numerical solution; U = 0.15keV y k = 0.161.
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Ge with recent data.

Results (Band is build to cover data)
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Figure 8: QF measurements for Ge, compared with Lindhard model, the
ansatz, and the numerical solution; U = 0.02 keV y k = 0.162.
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Low Energy Effects for Se

@ At low energies Se departures from velocity proportionality.
@ Colliding nuclei will partially penetrate the electron clouds.

Se = (Z)Nmv /0 " Veou(VE)NedV — ()Nmv /H " Veou(Ve)NedV

R distance closest approach and = is a geometrical factor* , negligible
for Z < 20.

@ Three models will be considered; Tilinin®, Kishinevsky’ and
Arista®

@ Models change details of the inter-atomic potential.

@ Hence affect f(t'/2) and S, at low energies.

61.S.Tilinin Phys. Rev. A 51, 3058 (1995)

“Kishinevsky, L.M., 1962, Izv. Akad. Nauk SSSR, Ser. Fiz. 26, 1410.

8J.M. FernAjndez-Varea, N.R. Arista, Rad. Phy. and C.,V 96, 88-91, (2014),




Exciton-lon Behavior

@ Exciton to ion fraction 8 = Nﬁ* usually is modeled by a constant.

@ With our formalism, we can built an Int.Diff. equation taking in to
account the excitation and ionization cross sections (work in
progress).

@ A preliminary study justify that NTEIX changes slowly for energies
> 1 keV.

@ So if the total quanta N;+ Nex = N with N = E/ W, hence
Eer = WN;(1+ ).

@ If Ngr = f,ER then, N; = fn(ﬁ), where f, can be computed
with our model. spatially small tracks.

@ In the following we show the Charge and Light Yiels for Ar and Xe,
using the constant binding energy model and S, = ke'/2.

@ Where also we are taking 8 and ﬁ = y as constants.
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