

6 de junio 2024 RADPyC

State-of-the-art of standard neutrinos.

Neutrino NSI in cosmology

Neutrino self-interactions with light and not so light mediators

Neutrinos

$$\Delta m_{\text{sol}}^2 = \Delta m_{21}^2 = m_2^2 - m_1^2 = 7.42^{+0.21}_{-0.20} \times 10^{-5}$$

$$\text{NH} \longrightarrow \Delta m_{\text{ATM}}^2 = \Delta m_{31}^2 = m_3^2 - m_1^2 = 2.517^{+0.026}_{-0.028} \times 10^{-5}$$

$$\text{IH} \longrightarrow \Delta m_{\text{ATM}}^2 = \Delta m_{23}^2 = m_2^2 - m_3^2 = 2.498^{+0.028}_{-0.028} \times 10^{-5}$$

We know that neutrinos have mass. We don't have a direct measurement of them

The most popular neutrino mass models require a neutrino NSI

Two decade anomaly with a S/N of 6 sigmas:

Wasn't confirmed by MicroBoone

2022 **MicroBooNE PRL**

Galium:

10-2

 $sin^2(2\theta_{14})$

95% CL

10⁻¹

PRD

Neutrinos are a main character in cosmology

BBN, supernovas

1 H		big	bang	fusion			cosmic ray fission					2 He					
3 Li	4 Be	mer	rging r	neutro	n stars	Mhan	exploding massive stars 📓					5 B	6 C	Z	8 0	9 F	10 Ne
11 Na	12 Mg	dyir	dying low mass stars					exploding white dwarfs 🧑					14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 lr	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																

Planck/ESA

Basically, they destroy structure

Neutrino cosmology

We need two params

They behave as radiation in (Around 40% of the totalrad) the early Universe

 $\sum m_{\nu} = m_1 + m_2 + m_3$

 $N_{\rm eff}$

Lately, they behave as matter

When the rad/matter transition occurs?

It depends on the neutrino mass

Theoretical computation $N_{\rm eff} = 3.044$

Neutrino cosmology

In general, they suppress the matter and temperature spectra

They also induce a phase in the acoustic peaks that cannot be mimicked by other cosmo params

2004 Bashinsky & Seljak PRD

2015 Follin+ PRL

2019 Baumann+ Nat. Astrom.

$N_{\rm eff} = 2.99 \pm 0.17 \ (68 \% C.L.)$ $\sum m_{\nu} < 0.12 \ (95 \% C.L.)$ 2021 Planck collab. A&A

Neutrino freestreaming

Neutrino cosmology - 2024

 $\sum m_{\nu} < 0.072 \ (95\% C.L.)$ Fixed Neff, LCDM

Neutrinos NSI (order zero effects) a very incomplete list

NSI can explain why cosmology can have strong mass bounds

The mediator can contribute to Neff

Neutrino self-interactions... and the H0 tension

Similar results with ACT, SPT, BICEP

$67.4_{-0.5}^{+0.5}$ Early -• Planck 67.4+1.2 DES + BAO + BBN Late 74.0+1.4 SH0ES 69.8^{+1.9} CCHP 73.6+3.9 Miras 73.3+1.8 HOLICOW 74.8+3.1 MCP 76.5+4.0 -•-SBF Early vs. late 73.1^{+0.9} -0.9 Combining all 5.7σ 73.9^{+1.0} With Cepheids 5.7σ 72.5+1.2 With TRGB 4.1σ 73.9+1.4 With Miras 4.6σ 74 66 68 70 72 76 80 78

 H_0 (km s⁻¹ Mpc⁻¹)

Positive correlation between N_{eff} H₀

2019 Verde+ Nature

Neutrino self-interactions... and the H0 tension

Similar results with ACT, SPT, BICEP

Positive correlation between N_{eff} H₀

2019 Verde+ Nature

Neutrino NSI imply a larger H₀

 $H_0 = 73.04 \pm 1.04 \text{ km s}^{-1} \text{Mpc}^{-1}$ 2112.04510

Perturbations (cosmological) $\mathcal{U}\mathcal{U} \longrightarrow \mathcal{U}\mathcal{U}$ $\Gamma_{\rm scatt} = \langle \sigma_0 v \rangle n_{\nu}$ $\Gamma_{\text{scatt}} \Psi$

Relaxation Time Approximation (RTA)

$$\frac{1}{f_0}C(f) = -a$$

For I=O y I=1 null change mean Neutrino number and momenta is conserved

$$\Psi_3) - \left(\frac{1}{15}\dot{h} + \frac{2}{5}\dot{\eta}\right)\frac{d\ln f_0}{d\ln q} - a\Gamma_{\rm scatt}\Psi_2$$

 $\dot{\Psi}_{l} = \frac{qk}{(2l+1)\epsilon} [l\Psi_{l-1} - (l+1)\Psi_{l+1}] - a\Gamma_{\text{scatt}}\Psi_{l}$ $l \geq 3$

Neutrino self-interactions The mediator mass dictates the dynamics

 $0.183g_{\rm eff}^4 T_{\nu}$

 $\alpha_I G_H^2 T_{\nu}^5$

$$G_H = \frac{|g_\nu|^2}{m_\varphi^2}$$

G_H can be up to 9 order of magnitude larger than **G**_F

The tension can be solved (partially)

2021 Choudhury+ JCAP

The GH values are so large to not to be seen on experiments, astrophysics and BBN

The tension can be solved (partially)

2021 Choudhury+ JCAP

The GH values are so large to not to be seen on experiments, astrophysics and BBN

Light mediator

Update..

He+ PRD (2024) 2309.03956

Heavy mediator

Large Scale Structure Galaxy FS PS

Camarena+ PRD (2023) 2309.03941

Update..

He+ PRD (2024) 2309.03956

Heavy mediator

Large Scale Structure Galaxy FS PS

Camarena+ PRD

Camarena+ 2403.05496

Update...

Including flavor physics

2021 Esteban+ PRD

Neutrino self-interactions The mediator mass dictates the dynamics

 $0.183 g_{\rm eff}^4 T_{\nu}$

 $\Gamma_{\rm res}(g_{\nu}^2, m_{\varphi}; T_{\nu})$

Para
$$m_{\varphi} < 10^{-3} \, {\rm eV}$$

Para
$$10^{-3} \text{ eV} < m_{\varphi} < 10^3 \text{ eV}$$
 Resonance

Para
$$m_{\varphi} > 10^3 \text{ eV}$$

Resonant region

 $10^{-3} \text{ eV} < m_{\phi} < 10^3 \text{ eV}$

 $\Gamma_{\text{scatt}} = \left\langle \sigma_0 v \right\rangle n_{\nu}$

$$\Gamma_{\phi} = \frac{g_{\nu}^2 m_{\phi}}{4\pi} \qquad s = E_{\rm CM}^2$$

Resonant region

When the width is pretty small

$$\lim_{\Gamma_{\phi} \to 0} \sigma_{0}(s) = \frac{4\pi^{2}\Gamma_{\phi}s}{m_{\phi}^{3}} \lim_{\Gamma_{\phi} \to 0} \frac{\Gamma_{\phi}m_{\phi}}{[s - m_{\phi}^{2}]^{2} + \Gamma_{\phi}^{2}m_{\phi}^{2}} = \frac{\pi g_{\nu}^{2}}{m_{\phi}^{2}} s \,\,\delta(s - m_{\phi}^{2})$$

 $10^{-3} \text{ eV} < m_{\phi} < 10^{3} \text{ eV}$

 $\Gamma_{\text{scatt}} = \left\langle \sigma_0 v \right\rangle n_{\nu}$

$$\Gamma_{\phi} = \frac{g_{\nu}^2 m_{\phi}}{4\pi} \qquad s = E_{\rm CM}^2$$

The cross-section is a Dirac delta

Resonant region

 $\left\langle \sigma_0 v \right\rangle = \frac{1}{n_{\nu}^2} \int \frac{d^3 p_1}{(2\pi)^3} \int \frac{d^3 p_2}{(2\pi)^3} f_{FD}(p_1) f_{FD}(p_2) \sigma_0(s) v$

We have to take into account all the available energies

1991 Gondolo & Gelmini Nucl. Phys. B

2015 Vassh+ PRD

 $10^{-3} \text{ eV} < m_{\phi} < 10^3 \text{ eV}$ $\Gamma_{\rm scatt} = \left< \sigma_0 v \right> n_{\nu}$

Resonant region

$$10^{-3} \text{ eV} < m_{\varphi} < 10^{3} \text{ eV}$$

$$\Gamma_{\text{scatt}} = \langle \sigma_{0}v \rangle n_{\nu}$$

$$\Gamma_{\text{scatt}} = \langle \sigma_{0}v \rangle n_{\nu}$$
We have to take into account all the available energies

$$T_{0}v \rangle \rightarrow \langle \sigma_{0}v_{\text{MOL}} \rangle = \frac{4\pi^{2}T^{2}}{(2\pi)^{6}n_{\nu}^{2}} \int_{0}^{\infty} \sigma_{0}(s)sF(s;T)ds$$

$$F(s;T) = \int_{\sqrt{5}T}^{\infty} dx \frac{e^{-x}}{1-e^{-x}} \left[\frac{\sqrt{x^{2}-s/T^{2}}}{2} + \ln(G(x;s,T)) \right]$$

$$G(x;s,T) = \frac{1+e^{-1/2[x+\sqrt{x^{2}-s/T^{2}}]}}{1+e^{-1/2[x-\sqrt{x^{2}-s/T^{2}}]}}$$

Resonant region

$$10^{-3} \text{ eV} < m_{\varphi} < 10^{3} \text{ eV}$$

$$\Gamma_{\text{scatt}} = \langle \sigma_{0}v \rangle n_{\nu}$$

$$\langle \sigma_{0}v \rangle = \frac{1}{n_{\nu}^{2}} \int \frac{d^{3}p_{1}}{(2\pi)^{3}} \int \frac{d^{3}p_{2}}{(2\pi)^{3}} f_{FD}(p_{1}) f_{FD}(p_{2}) \sigma_{0}(s) v$$

$$\downarrow$$
We have to take into account all the available energies

$$\langle \sigma_{0}v \rangle \rightarrow \langle \sigma_{0}v_{\text{MOL}} \rangle = \frac{4\pi^{2}T^{2}}{(2\pi)^{6}n_{\nu}^{2}} \int_{0}^{\infty} \sigma_{0}(s) sF(s;T) ds$$

$$F(s;T) = \int_{\sqrt{s}T}^{\infty} dx \frac{e^{-x}}{1-e^{-x}} \left[\frac{\sqrt{x^{2}-s/T^{2}}}{2} + \ln(G(x;s,T)) \right] \qquad G(x;s,T) = \frac{1+e^{-1/2[x+\sqrt{x^{2}-s/T^{2}}]}}{1+e^{-1/2[x-\sqrt{x^{2}-s/T^{2}}]}}$$

Resonant region

$$10^{-3} \text{ eV} < m_{\varphi} < 10^{3} \text{ eV}$$

$$\Gamma_{\text{scatt}} = \langle \sigma_{0}v \rangle n_{\nu}$$

$$\int_{\text{scatt}} \frac{1}{n_{\nu}^{2}} \int \frac{d^{3}p_{1}}{(2\pi)^{3}} \int \frac{d^{3}p_{2}}{(2\pi)^{3}} f_{FD}(p_{1}) f_{FD}(p_{2}) \sigma_{0}(s) v$$

$$\int_{\text{We have to take into account all the available energies}$$
We have to take into account all the available energies

$$f_{0}v \rangle \rightarrow \langle \sigma_{0}v_{\text{MOL}} \rangle = \frac{4\pi^{2}T^{2}}{(2\pi)^{6}n_{\nu}^{2}} \int_{0}^{\infty} \sigma_{0}(s) sF(s;T) ds$$

$$F(s;T) = \int_{\sqrt{5}T}^{\infty} dx \frac{e^{-x}}{1-e^{-x}} \left[\frac{\sqrt{x^{2}-s/T^{2}}}{2} + \ln(G(x;s,T)) \right] \qquad G(x;s,T) = \frac{1+e^{-1/2[x+\sqrt{x^{2}-s/T^{2}}]}}{1+e^{-1/2[x-\sqrt{x^{2}-s/T^{2}}]}}$$

1991 Gondolo & Gelmini Nucl. Phys. B

2015 Vassh+ PRD

We have to fix the mediator mass, the only new free parameter is the coupling

We can see an enhancement on the temperature spectral

1 and 10 eV have a stronger effect (with the same coupling)

Larger masses enter to the horizon first

2023 Venzor+ PRD

Example: mass=1eV

2023 Venzor+ PRD

Full Shape Galaxy spectrum

Non linear effects on the Matter Power Spectrum

Recently developed Zaldarriaga, Simonovic, Ivanov, Cox, Scoccimarro

Preliminary

Perspectives

- All neutrino self-interaction cases require extra radiation
- In the heavy mediator case the bimodality of the coupling posterior has not disappeared.
- For the light and resonant cases we need to include non-elastic processes into the analysis.

Thanks!