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Space-time Symmetries

Space-time symmetries

The Poincaré Group is the group of transformations xµ → x′µ leaving
invariant the interval (ds)2 = ηµνdx

µdxν , and can be split in two distinct
pieces:

Spacetime Translations x′µ = xµ + aµ, with constant parameters
aµ.
The group of transformations x′µ = Lµνx

ν defined by the condition

LµρηµνL
ν
σ = ηρσ. (1)

This group is known as O(1, 3) or Lorentz Group
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Space-time Symmetries

Lorentz Group

In turn, Lorentz Group O(1, 3) can be split into four disconnected
pieces, namely:

The continuous subgroup SO(1, 3)+ or Restricted Lorentz Group
(RLG), with elements Λµν . This subgroup contains proper
orthochronous transformations (those continuously connected
with the identity detΛ = 1 and preserving the direction of time
Λ0

0 > 0).
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Space-time Symmetries

Improper orthochronous transformations, described by [PΛ]µν ,
where the transformation

P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2)

can be identified as space inversion, or Parity, since x′µ = Pµ
νx

ν

implies t′ = t and x′ = −x. This sector is characterized by
detPΛ = −1 and [PΛ]00 > 0.
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Space-time Symmetries

Improper heterochronous transformations, described by [T Λ]µν ,
with

T =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (3)

which implements Time Reversal, in the sense x′µ = T µ
νx

ν

implies t′ = −t and x′ = x. In this case det T Λ = −1 and
[T Λ]00 < 0.
Proper heterochronous transformations, described by [PT Λ]µν ,
with detPT Λ = 1 and [PT Λ]00 < 0.
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Space-time Symmetries

Thus the isometries (for vectors with fixed origin) in Minkowski
space-time are described by the continuous RLG SO(1, 3)+ together
with the discrete transformations P and T that belong to the quotient
group

O(1, 3)/SO(1, 3)+ ≃ Z2 ⊗ Z2 = {I,P, T ,PT } . (4)
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Space-time Symmetries

Lorentz Algebra

The continuous SO(1, 3)+ group contains 6 parameters, describing
3 rotations, parameterized in cartesian coordinates by

Λ(θ1, 0) =


1 0 0 0
0 1 0 0
0 0 cos θ1 − sin θ1
0 0 sin θ1 cos θ1

 , (5)

Λ(θ2, 0) =


1 0 0 0
0 cos θ2 0 sin θ2
0 0 1 0
0 − sin θ2 0 cos θ2

 , (6)

Λ(θ3, 0) =


1 0 0 0
0 cos θ3 − sin θ3 0
0 sin θ3 cos θ3 0
0 0 0 1

 , (7)
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Space-time Symmetries

3 boosts, that can be parameterized in terms of 3 rapidities φi,
defined by vi = tanhφi, as

Λ(0, φ1) =


coshφ1 sinhφ1 0 0
sinhφ1 coshφ1 0 0

0 0 1 0
0 0 0 1

 , (8)

Λ(0, φ2) =


coshφ2 0 sinhφ2 0

0 1 0 0
sinhφ2 0 coshφ2 0

0 0 0 1

 , (9)

Λ(0, φ3) =


coshφ3 0 0 sinhφ3

0 1 0 0
0 0 1 0

sinhφ3 0 0 coshφ3

 . (10)
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Space-time Symmetries

Thus any element of SO(1, 3)+ in its defining representation can be
written as

Λ(θ,φ) = e−i(θ·J+φ·K), (11)

where the generators are given by

Ji = i
∂Λ(θ,φ)

∂θi

∣∣∣∣
θ,φ→0

, Ki = i
∂Λ(θ,φ)

∂φi

∣∣∣∣
θ,φ→0

. (12)
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Space-time Symmetries

Explicitly,

J1 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 , K1 =


0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 ,

J2 =


0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

 , K2 =


0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0

 ,

J3 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 , K3 =


0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0

 . (13)
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Space-time Symmetries

The algebra satisfied by these generators is

[Ji, Jj ] = iϵijkJk , [Ji,Kj ] = iϵijkKk , [Ki,Kj ] = −iϵijkJk . (14)

In terms of an antisymmetric tensor J µν = −J νµ defined as

Ji ≡ 1
2ϵijkJ

jk, Ki ≡ J 0i, (15)

the Lorentz algebra takes the form

[J µν ,J ρσ] = i(ηµσJ νρ + ηνρJ µσ − ηµρJ νσ − ηνσJ µρ), (16)

and the defining elements of the Lorentz group can be written as

Λ = e−
i
2
ΩµνJ µν

= e−i(θ·J+φ·K), (17)

with Ωµν = −Ωνµ, and θi ≡ 1
2ϵijkΩjk, φi ≡ Ω0i.
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Space-time Symmetries

Another useful representation of the Lorentz generators can be found
by defining the linear combinations

Ai =
1

2
(Ji + iKi), Bi =

1

2
(Ji − iKi). (18)

In terms of A and B, the Lorentz algebra becomes

[Ai, Aj ] = iϵijkAk, [Bi, Bj ] = iϵijkBk, [Ai, Bj ] = 0, (19)

which is locally isomorphic to two copies of su(2). We often quote that
result as

SO(1, 3)+ ≃ SU(2)A ⊗ SU(2)B. (20)
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Space-time Symmetries

We can further classify the irreps of the RLG in terms of SU(2)A and
SU(2)B, by noticing that

Irreps of each SU(2)A ⊗ SU(2)B can described by the states
{|a,ma⟩ |b,mb⟩}, with

A2 |a,ma⟩ = a(a+ 1) |a,ma⟩ , A3 |a,ma⟩ = ma |a,ma⟩ , (21)

B2 |b,mb⟩ = b(b+ 1) |b,mb⟩ , B3 |b,mb⟩ = mb |b,mb⟩ . (22)

RLG irreps have dimension (2a+ 1)(2b+ 1) and can be labeled by
the two half integers (a, b).
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Space-time Symmetries

RLG irreps form the following tower of states

(0, 0)

(12 , 0) (0, 12)

(1, 0) (12 ,
1
2) (0, 1)

(32 , 0) (1, 12) (12 , 1) (0, 32)

(2, 0) (32 ,
1
2) (1, 1) (12 ,

3
2) (0, 2)

Remarkably, in the Standard Model only four of them are included:
Scalars, Spin 1/2 fermions and Gauge bosons. We can explicitly
identify the form of the Lorentz group representation S(Λ) and the
Lorentz generators J µν for the fields transforming under irreps of the
RLG.
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Space-time Symmetries

If we denote a general field transforming under some irreducible
representation of the HGL as ϕa, we can write a finite Lorentz
transformation as

ϕ′a(x
′) = [S(Λ)]a

bϕb(x) = [e−
i
2
ΩµνJ µν

]a
bϕb(x), (23)

with x′µ = Λµνx
ν .

• Scalar Field (0, 0)

Defined by the transformation rule ϕ′(x′) = ϕ(x), we can easily
conclude that S0(Λ) = 1, and J µν

0 = 0.
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Space-time Symmetries

• Left-handed Weyl Spinor (12 , 0)

This field transforms according to

B =
1

2
(J− iK) = 0 ⇒ J = iK ⇒ A =

1

2
(J+ iK) = J =

σ

2

SL(Λ) = e−i
σ
2
·θ−σ

2
·φ,

We can identify its generators as J ij
L = ϵijk

σk

2 , J 0i
L = −iσi

2 . Defining
σµ = (1,σ) and σµ = (1,−σ), we have

J µν
L = i

4(σ
µσν − σνσµ), (24)

and the transformation rule for the left-handed fermion becomes

ϕ′a(x
′) = [SL(Λ)]a

bϕb(x) = [e−
i
2
ΩµνJ µν

L ]a
bϕb(x). (25)
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Space-time Symmetries

• Right-handed Weyl Spinor (0, 12)

A =
1

2
(J+ iK) = 0 ⇒ J = −iK ⇒ B =

1

2
(J− iK) = J =

σ

2

SR(Λ) = e−i
σ
2
·θ+σ

2
·φ,

and therefore J ij
R = ϵijk

σk

2 , J 0i
R = iσ

i

2 , or equivalently

J µν
R = i

4(σ
µσν − σνσµ). (26)

The Lorentz transformation of a right-handed spinor is written as

ψ′ȧ(x′) = [SR(Λ)]
ȧ
ḃψ

ḃ(x) = [e−
i
2
ΩµνJ µν

R ]ȧḃψ
ḃ(x). (27)

Notice that
S−1
R (Λ) = S†

L(Λ), S−1
L (Λ) = S†

R(Λ). (28)

C.A. Vaquera-Araujo Second Order Fermions June 6, 2024 18 / 51



Space-time Symmetries

• Dirac spinor

The Dirac spinor field χa(x), a = 1, . . . , 4 transforms in the
(12 , 0)⊕ (0, 12) representation of the RLG

χa(x) → S(Λ)abχb(Λ
−1x), S(Λ) = e

− i
2
ΩρσJ ρσ

1/2 . (29)

In the chiral basis, its RLG rep is

S(Λ) =

(
SL(Λ) 0

0 SR(Λ)

)
=

(
e−i

σ
2
·θ−σ

2
·φ 0

0 e−i
σ
2
·θ+σ

2
·φ

)
, (30)

with J µν
1/2 = i[γµ, γν ]/4. In this basis, the Dirac matrices are given by

γµ =

(
0 σµ

σµ 0

)
. (31)
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Space-time Symmetries

The Gamma matrices γµ, satisfy the Clifford algebra

{γµ, γν} ≡ γµγν + γνγµ = 2ηµν . (32)

The relation between Clifford algebra and the Lorentz group emerges
from the observation that the Dirac Lorentz generator can be written as(

1 + i
2ωρσJ

ρσ
1/2

)
γµ

(
1− i

2ωλτJ
λτ
1/2

)
=

(
1− i

2ωρσJ
ρσ
1

)µ
νγ

ν , (33)

with the generators of the vector representation

[J ρσ
1 ]µν = i[ηρµδσν − ησµδρν ]. (34)

This equation is just the infinitesimal form of

S(Λ)−1γµS(Λ) = Λµνγ
ν . (35)
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Dirac Equation

Dirac Equation

A Dirac spinor field satisfies a Lorentz covariant first order equation,
the Dirac equation

(iγµ∂µ −m)χ = 0. (36)

If χ satisfies the Dirac equation, then it automatically satisfies the
Klein-Gordon equation. We can show this by acting with (−iγµ∂µ −m)
the above equation

(−iγµ∂µ −m)(iγν∂ν −m)χ = (γµγν∂µ∂ν +m2)χ

= (12{γ
µ, γν}∂µ∂ν +m2)χ = (ηµν∂µ∂ν +m2)χ(x)

= (∂µ∂
µ +m2)χ = 0.

(37)
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Dirac Equation

There is an operator that distinguishes the different chiral spinors
inside a Dirac one, the chirality operator

γ5 ≡ iγ0γ1γ2γ3 = − i

4!
ϵµνρσγµγνγργσ. (38)

with ϵ0123 = −ϵ0123 = 1. In the chiral representation γ5 is diagonal

γ5 =

(
−1 0
0 1

)
(39)

and in general satisfies

(γ5)† = γ5,

(γ5)2 = 1,

{γ5, γµ} = 0.

(40)
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Dirac Equation

If χ satisfies the Dirac equation, then

(−iγµ∂µ −m)γ5χ = γ5(iγµ∂µ −m)χ = 0, (41)

and therefore, γ5χ also satisfies the Klein-Gordon Equation. It can be
shown that the most general solution to the Klein Gordon equation for
spin 1/2 fields can be written in terms of two solutions to the Dirac
equation χ1 and χ2 as (Cufaro Petroni et al, 1985)

ψ =
1√
2m

(χ1 + γ5χ2). (42)
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Second Order Fermions

Second Order Fermions

Is it possible to describe the dynamics of a spin 1/2 particle using the
Klein-Gordon equation?

Yes

2311.06466 [hep-th]
Rodolfo Ferro-Hernández, Julio Olmos, Eduardo Peinado, CAV-A
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Second Order Fermions

Naive Theory
The simplest second order theory for free spin 1/2 fermions is
described by the Lagrangian

L0 = ∂µψ̄∂µψ −m2ψ̄ψ (43)

where the Dirac dual is defined as ψ̄ = ψ†γ0, rendering the theory
Lorentz invariant. The corresponding equations of motion coincide with
the Klein-Gordon equation for each component of the field and its dual.
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Second Order Fermions

Observations

The conjugate-momenta are given by ˙̄ψ and ψ̇ Without imposing
further constraints, this second order formalism is described by a
spinor with 8 degrees of freedom, the double compared to Dirac.
The mass dimension of the field is one, in sharp contrast with
Dirac spinors which have mass dimension 3/2.
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Second Order Fermions

Unfortunately this simple theory has an undesirable feature. It can be
shown that if the following canonical anti-commutation relations are
imposed at equal times{
ψα(x, t),

˙̄ψβ(x
′, t)

}
= −

{
ψ̄α(x, t), ψ̇β(x

′, t)
}
= iδαβδ

(3)(x− x′), (44)

an indefinite metric problem emerges, leading to the presence of
negative norm states in the spectrum (Kibble and Polkinghorne,1958).
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Second Order Fermions

In this talk, we show that the canonical quantization of second order
fermions is possible by the adoption of a pseudo hermitian quantum
field theory through an adequate redefinition of the dual field and the
identification of an operator η such that

L# ≡ η−1L†η = L. (45)
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Second Order Fermions

Pseudo-Hermitian Quantum Mechanics
The dynamics of the pseudo-hermitian quantum theory with
H# = η−1H†η = H are guaranteed to be unitary if the inner product
between two states is defined as

⟨a|b⟩η ≡ ⟨a| η |b⟩ . (46)

In this way, probability amplitudes are preserved under time evolution:

⟨a(t)|b(t)⟩η = ⟨a| eiH†tηe−iHt |b⟩ = ⟨a| ηeiHte−iHt |b⟩ = ⟨a|b⟩η . (47)

Similarly, the new inner product renders the energy spectrum real

(E − E∗) ⟨aE |aE⟩η = ⟨aE | (ηH −H†η) |aE⟩ = 0, (48)

where the state |aE⟩ is an energy eigenstate H |aE⟩ = E |aE⟩.
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Second Order Fermions

Pseudo-Hermitian Second Order Fermions

The Lagrangian for the spin 1/2 field is given by

L = ∂µψ̂∂µψ −m2ψ̂ψ, (49)

where ψ̂ is not the Dirac adjoint of ψ, but instead a redefinition of its
dual that renders the theory pseudo-hermitian.

ψ̂ = η−1ψ̄η = η−1ψ†ηγ0. (50)
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Second Order Fermions

It can be shown that if ψ is the most general solution to the
Klein-Gordon equation for spin 1/2 fields

ψ =
1√
2m

(χ1 + γ5χ2), (51)

then, the dual ψ̂ that renders the theory pseudo-hermitian is

ψ̂ = η−1ψ̄η =
1√
2m

η−1(χ1 − χ2γ
5)η =

1√
2m

(χ1 + χ2γ
5). (52)
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Second Order Fermions

Expanding ψ and ψ̂ into plane waves, we have

ψ(x) =

∫
d3p

(2π)32
√
mωp

∑
s

{[
uspa

1s
p + γ5uspa

2s
p

]
e−ip·x

+
[
vspb

1s†
p + γ5vspb

2s†
p

]
eip·x

}
, (53)

ψ̂(x) =

∫
d3p

(2π)32
√
mωp

∑
s

{[
ūspa

1s†
p + ūspγ

5a2s†p

]
eip·x

+
[
v̄spb

1s
p + v̄spγ

5b2sp
]
e−ip·x

}
, (54)

with ωp = +
√
|p|2 +m2, pµ = (ωp,p), usp, vsp as the positive and

negative energy solutions of the Dirac free equation, and s = ±1
2 .

C.A. Vaquera-Araujo Second Order Fermions June 6, 2024 32 / 51



Second Order Fermions

Thus, the action of the operator η is defined by

η−1ajsp η = (−1)j−1ajsp , η−1bjs†p η = (−1)j−1bjs†p , (55)

where j = 1, 2. Assuming equal time canonical anti-commutation
relations{
ψα(x, t),

˙̂
ψβ(x

′, t)
}
= −

{
ψ̂α(x, t), ψ̇β(x

′, t)
}
= iδαβδ

(3)(x− x′), (56)

we have {
ajsp , a

kr†
p′

}
= (2π)3δjkδrsδ(3)(p− p′),{

bjsp , b
kr†
p′

}
= (2π)3δjkδrsδ(3)(p− p′),

(57)

with all other anti-commutators vanishing.
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Second Order Fermions

An explicit solution for the operator η is given by

η = exp

[
iπ

∫
d3p

(2π)3

∑
s

(
a2s†p a2sp + b2s†p b2sp

)]
. (58)

This operator satisfies η = η† and ηη† = 1, meaning that η2 = 1, and
thus their eigenvalues are ±1.

C.A. Vaquera-Araujo Second Order Fermions June 6, 2024 34 / 51



Second Order Fermions

Microcausality

Due to the redefinition of the dual implemented by the η operator, the
fields display the correct properties under microcausality. In particular,
we have

{ψα(x), ψβ(y)} =
{
ψ̂α(x), ψ̂β(y)

}
= 0, (59)

and {
ψα(x), ψ̂β(y)

}
≡ ∆(x− y)δαβ

=

∫
d3p

(2π)32ωp

{
e−ip·(x−y) − eip·(x−y)

}
δαβ,

(60)

where ∆(x− y) is the well known Lorentz invariant and causal
Schwinger’s Green function.
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Second Order Fermions

Hamiltonian and Momentum

The Hamiltonian and the momentum operator are given by

H =:

∫
d3x

{
˙̂
ψψ̇ +∇ψ̂ · ∇ψ +m2ψ̂ψ

}
:,

P =: −
∫
d3x

{
˙̂
ψ∇ψ +∇ψ̂ψ̇

}
:,

(61)

where : : stands for normal ordering. In terms of the momentum space
operators, the generators of space-time translations Pµ = (H,P) read

Pµ =

∫
d3p

(2π)3
pµ

∑
j,s

{
ajs†p ajsp + bjs†p bjsp

}
. (62)

C.A. Vaquera-Araujo Second Order Fermions June 6, 2024 36 / 51



Second Order Fermions

Spin

The spin of the field is

S =: −i
∫
d3x

{
˙̂
ψJψ − ψ̂Jψ̇

}
:, (63)

where the components of J are given by Jk = 1
2ϵijkJ

ij
1/2. One can

explicitly show that the field contains particles of spin 1/2:

S3ajs†0 |0⟩ = sajs†0 |0⟩ , S3bjs†0 |0⟩ = sbjs†0 |0⟩ . (64)
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Second Order Fermions

Abelian Global Symmetry

The free theory of second order fermions is invariant under the phase
transformation

ψ → ψ′ = eiθψ, ψ̂ → ψ̂′ = ψ̂e−iθ, (65)

where θ is a constant real parameter. The conserved charge
associated to this U(1) global symmetry is

Q = : i

∫
d3x

{
ψ̂ψ̇ − ˙̂

ψψ

}
:

=

∫
d3p

(2π)3

∑
j,s

{
ajr†p ajsp − bjr†p bjsp

}
.

(66)
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Second Order Fermions

From the commutation relation of this operator with the creation and
annihilation operators, one can conclude that ajs†p and bjsp have charge
+1, whereas ajsp and bjs†p have charge −1. Labeling the one-particle
states with this eigenvalue, one can show that they are eight-fold
degenerate

Hajs†p |0⟩ ∝ H |p,+, j, s⟩ = ωp |p,+, j, s⟩ ,
Hbjs†p |0⟩ ∝ H |p,−, j, s⟩ = ωp |p,−, j, s⟩ .

(67)
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Second Order Fermions

Symplectic Symmetry

Since the field ψ and its dual anticommute {ψα(x), ψ̂β(x)} = 0, we can
write the free lagrangian as

L =
1

2
∂µΨTΩ∂µΨ− m2

2
ΨTΩΨ, (68)

where Ψ is a column matrix defined as

Ψ(x) =

(
ψ̂T (x)
ψ(x)

)
, (69)

and Ω is the 8× 8 symplectic matrix, written in 4× 4 blocks as

Ω =

(
04×4 14×4

−14×4 04×4

)
. (70)
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Second Order Fermions

Thus, the free theory is symmetric under the global transformations
Ψ → Ψ′ = SΨ with STΩS = Ω. This is the defining relation for an
element of the symplectic group Sp(8,C), whose algebra has 36
generators.
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Discrete Symmetries

The second order theory is invariant under Parity (P), Charge
conjugation (C) and Time reversal (T), and therefore under CPT. We
define the discrete transformations of the ψ field through their action
on the creation operators, as follows:

Pajs†p P−1 = −i(−1)j−1ajs†−p, Pbjs†p P−1 = −i(−1)j−1bjs†−p,

Cajs†p C−1 = bjs†p , Cbjs†p C−1 = ajs†p , (71)

Tajs†p T−1 = 2sa
j(−s)†
−p , Tbis†p T−1 = 2sb

i(−s)†
−p .
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With this choice, the discrete transformations have the familiar
representations

Pψ(x)P−1 = iγ0ψ(Px), Pψ̂(x)P−1 = −iψ̂(Px)γ0,

Cψ(x)C−1 = Cψ̂ T , Cψ̂C−1 = ψTC (72)

Tψ(x)T−1 = Cγ5ψ(T x), Tψ̂T−1 = −ψ̂(T x)γ5C,

where we have defined P = diag(1,−1,−1,−1), T = diag(−1, 1, 1, 1),
and C = −iγ2γ0 in the chiral representation.
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Interactions

The simplest C, P and T invariant pseudo-hermitian interactions that
can be introduced in this framework are 4-fermion self-interactions
represented by a dimension-four renormalizable operator

Lself
int =

λ1
2

(
ψ̂ψ

)2
+
λ2
2

(
ψ̂γ5ψ

)(
ψ̂γ5ψ

)
+
λ3
2

(
ψ̂Mµνψ

)(
ψ̂Mµνψ

)
,

(73)

with Mµν = J µν
1/2.
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The spin 1/2 field can also be coupled with an abelian gauge field
according to

Lgauge =− 1

4
FµνFµν +D†µψ̂GµνD

νψ −m2ψ̂ψ (74)

where Dµ = ∂µ + iqAµ is the covariant derivative, and we have
introduced the space-time tensor

Gµν ≡ gµν − igMµν , (75)

to produce a theory analogous to Scalar QED, supplemented with a
Pauli interaction characterized by the coupling constant g, that can be
identified as an arbitrary gyromagnetic factor. The resulting
pseudo-hermitian interaction Lagrangian is

Lgauge
int = iq[∂µψ̂ψ − ψ̂∂µψ]Aµ + q2ψ̂ψAµAµ −

qg

2
ψ̂MµνψF

µν (76)
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The one loop renormalization properties of this theory have been
studied in arXiv:1205.1557 [hep-ph]. The beta functions and
anomalous dimensions of the theory at one-loop are

βq =
q3

12π2

(
3

4
g2 − 1

)
,

βg =
g

32π2

[
q2

(
g2 − 4

)
− 4(λ1 + λ2 − 3λ3)

]
,

βλ1
=− 1

16π2

{
3

4
q4

(
g2 − 4

)2
+ 3q2

[(
4 + g2

)
λ1 + g2λ3

]
+ 4λ2 (λ1 + λ2) + 6λ3 (2λ1 + λ3)

}
,

βλ2
=− 1

16π2

{
3q2

[(
4 + g2

)
λ2 + g2λ3

]
+ 4λ2 (3λ1 − λ2) + 6λ3 (2λ2 + λ3)

}
,

βλ3
=− 1

16π2

{
q2

[(
12− g2

)
λ3 + 2g2 (λ1 + λ2)

]
+ 4λ3[3(λ1 + λ2)− 2λ3]

}
.
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Fixed points for βg
Dirac-like configuration {g = ±2, λ1 = λ2 = λ3 = 0}, the
renormalization group equations (RGE) coincide with those
obtained in the Dirac framework, except for the number of degrees
of freedom propagating inside the fermion loops, the double
compared with respect to Dirac.
Scalar-like solution g = 0 with arbitrary self interactions λi. In this
scenario the fermi statistics drive βq negative. Thus, at one loop
level, the solution g = 0 with vanishing self-interactions displays
asymptotic freedom for the coupling q.
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Conversely, in the limit of vanishing gauge interactions q = 0, g = 0, we
have a renormalizable theory of self-interacting fermions with rich
phenomenology. Taking, for example, λ1 = λ, λ2 = λ3 = 0, we obtain
the simplest model of self-interacting fermions

L = ∂µψ̂∂µψ −m2ψ̂ψ +
λ

2

(
ψ̂ψ

)2
, (77)

with vanishing one-loop beta function βλ = 0.
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Wimp Dark Matter

The second order fermion can couple with the Higgs field H through a
quartic dimensionless coupling

LψH =
λH
2

(
ψ̂ψ

)
H†H. (78)

Furthermore, since ψ has nothing to decay in, it is stable and could
play the role of Wimp dark matter through a Higgs portal.
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Conclusions

Conclusions

Spin 1/2 fermions can be successfully described by a second
order formalism, provided the underlying Quantum Field Theory is
pseudo-hermitian.
Second Order Fermions are causal, with real spectrum,
Hamiltonian bounded from below, unitary evolution and CPT
invariance.
The field contains 8 degrees of freedom
Since the field has mass dimension one, the theory contains
renormalizable self-interactions.
The field is a Wimp Dark Matter candidate.
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Conclusions

Thanks
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