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Space-time symmetries

The Poincaré Group is the group of transformations x# — x'# leaving

invariant the interval (ds)? = nudxtdx”, and can be split in two distinct
pieces:

@ Spacetime Translations x'# = x* + a*, with constant parameters
at.

@ The group of transformations 2/ = L*,z" defined by the condition
Lupmeycr = Tlpo - (1)

This group is known as O(1, 3) or Lorentz Group
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Space-time Symmetries

Lorentz Group

In turn, Lorentz Group O(1, 3) can be split into four disconnected
pieces, namely:

@ The continuous subgroup SO(1,3)" or Restricted Lorentz Group
(RLG), with elements A*,. This subgroup contains proper
orthochronous transformations (those continuously connected
with the identity det A = 1 and preserving the direction of time

AOO > 0).
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Space-time Symmetries

@ Improper orthochronous transformations, described by [PAJ*,,
where the transformation

1 0 0 O
0 -1 0 O

P = 0 0 -1 0 @)
0o 0 0 -1

can be identified as space inversion, or Parity, since 2'# = PH, z¥
implies ¢’ = t and x’ = —x. This sector is characterized by
det PA = —1 and [PA]% > 0.
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Space-time Symmetries

@ Improper heterochronous transformations, described by [TA]#,,

with
-1 0
0 1
T= 0 0
0 O

which implements Time Reversal, in the sense 2/ = T+, x

= o O

0

— o O O

implies ¢’ = —t and x’ = x. In this case det TA = —1 and

[TA]OO < 0.

@ Proper heterochronous transformations, described by [PTAJ#,,
with det PTA =1 and [PTA]% < 0.
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Space-time Symmetries

Thus the isometries (for vectors with fixed origin) in Minkowski
space-time are described by the continuous RLG SO(1,3)* together
with the discrete transformations P and 7 that belong to the quotient
group

0(1,3)/SO(1,3)" ~ Zy @ Zo = {I, P, T,PT}. (4)
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Space-time Symmetries

Lorentz Algebra

The continuous SO(1, 3)™ group contains 6 parameters, describing
@ 3 rotations, parameterized in cartesian coordinates by

1 0 0 0
0 1 0 0
A(61,0) = 0 0 cosfy —sinfy (5)
0 0 sinfy cosbt,
1 0 0 0
0 cosf 0 sinf
A(927 O) = 0 0 ? 1 0 ? ) (6)
0 —sinfy 0 cosby
1 0 0 0
- 0 cosf3 —sinfs 0
A(6s,0) = 0 sinf3 cosf; 0]’ (7)
0 0 0 1
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Space-time Symmetries

o 3 boosts, that can be parameterized in terms of 3 rapidities ;,
defined by v; = tanh ¢;, as

coshpy sinhg; 0 0
sinh cosh 0 0
A(O7 991) = 0 71 0 71 1 0]’ (8)
0 0 0 1
coshypy 0 sinhps 0
0 1 0 0
A p2) = sinhps 0 coshps 0O ©)
0 0 0 1
coshps 0 0 sinhes
0 1 0 0
sinhps 0 0 cosheps
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Space-time Symmetries

Thus any element of SO(1, 3)" in its defining representation can be

written as
A(B, ) = e OTHEK),

where the generators are given by
R N6, ¢)

Jy=i 2P . K= 22 .
i 9.0 021 lop-0
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Space-time Symmetries

Explicitly,
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Space-time Symmetries

The algebra satisfied by these generators is
i, Jj) = t€ijudi, [Ji, Kj) =i€ijn Ky, [Ki, Kj] = —igjpdy.  (14)
In terms of an antisymmetric tensor 7#* = — 7" defined as
Ji = Len T, K, =J%, (15)
the Lorentz algebra takes the form
[TH, TP°] = i(nho TYP 4 /P THT — nhP TV — n¥® JHP), (16)
and the defining elements of the Lorentz group can be written as
A= efgﬂu,,ﬂ“’ _ e*i(H-JJrcp-K)’ (17)

with Qw/ = —Q,ju, and ¢, = %eiijjky Y = Qo;-
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Space-time Symmetries

Another useful representation of the Lorentz generators can be found
by defining the linear combinations

1
Ay = %(Ji +iK;), Bi= §(Jz‘ —iKj;). (18)

In terms of A and B, the Lorentz algebra becomes
[Ai, Aj] = i€y A, [Bi, Bj] = iejp By, [As, Bj| =0, (19)

which is locally isomorphic to two copies of su(2). We often quote that
result as
SO(1,3)" ~ SU(2)4 ® SU(2)p. (20)
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Space-time Symmetries

We can further classify the irreps of the RLG in terms of SU(2) 4 and
SU(2) g, by noticing that
o Irreps of each SU(2)4 @ SU(2)p can described by the states
{la, mq) |b,mp) }, with
A?la,my) = ala+1) |a,my) , Az|a, ma) = mg |a,mg), (21)
B2 |b,my) = b(b+ 1) |b,my) , Bs|b,mp) = my |b,mp) . (22)

@ RLG irreps have dimension (2a + 1)(2b + 1) and can be labeled by
the two half integers (a, b).
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Space-time Symmetries

RLG irreps form the following tower of states

(0,0)
(3,0) (0,3)
(1,0) (3.3) (0,1)

(5,00 (1,3) (3.1
(2,00 (33 @D

Remarkably, in the Standard Model only four of them are included:
Scalars, Spin 1/2 fermions and Gauge bosons. We can explicitly
identify the form of the Lorentz group representation S(A) and the
Lorentz generators 7+ for the fields transforming under irreps of the
RLG.
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Space-time Symmetries

If we denote a general field transforming under some irreducible
representation of the HGL as ¢,, we can write a finite Lorentz
transformation as

dh(a') = [S(M)]"do(x) = [e™ 2% ] by (2), (23)
with 2/# = A, 2"

e Scalar Field (0,0)

Defined by the transformation rule ¢'(z’) = ¢(z), we can easily
conclude that So(A) = 1, and 73" = 0.
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Space-time Symmetries

e Left-handed Wey! Spinor (3,0)
This field transforms according to

We can identify its generators as J;’ = ¢;j1%, J = —i% . Defining
ot =(1,0)and " = (1,—0), we have

T = %(U”EV —oat), (24)
and the transformation rule for the left-handed fermion becomes

(@) = [SL(N)]dp(x) = [e 3% TE | by (). (25)
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Space-time Symmetries

« Right-handed Weyl Spinor (0, 1)

1
A:%(J+Z‘K):0:>J:—iK :B:i(J—iK):J:%
SR(A) = e—i%‘0+%'<p7
and therefore j” = ewk -, Tl = z’— or equivalently
TR = %(E“a” —oat). (26)
The Lorentz transformation of a right-handed spinor is written as
W) = [Sr(A)] 0 () = [ 2% TR )b (). (27)
Notice that
Sp'(A) = SL(A),  SpM(A) = Sh(A). (28)
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Space-time Symmetries

e Dirac spinor

The Dirac spinor field x,(x), a =1,...,4 transforms in the
(3,0) @ (0, 3) representation of the RLG

Xo(@) = SN axp(A™1z),  S(A) = e 2%, (29)

In the chiral basis, its RLG rep is

with 1“/”2 = i[y*,~"]/4. In this basis, the Dirac matrices are given by
0 ot
L
yH = (U“ O) . (31)
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Space-time Symmetries

The Gamma matrices ~*, satisfy the Clifford algebra
(VA =AM A =2 (32)

The relation between Clifford algebra and the Lorentz group emerges
from the observation that the Dirac Lorentz generator can be written as

(1 + %Wpajf/g) o (1 - %W/\ij}g) = (1 - %Wpajlpg)ﬂ v (33)
with the generators of the vector representation
[T = iln?ey — n7ap). (34)
This equation is just the infinitesimal form of

S(A) TS (A) = Ay, (35)
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Dirac Equation

A Dirac spinor field satisfies a Lorentz covariant first order equation,
the Dirac equation

(iv"0, —m)x = 0. (36)
If x satisfies the Dirac equation, then it automatically satisfies the

Klein-Gordon equation. We can show this by acting with (—iv*9,, — m)
the above equation

(=70 — m)(i7" 0, — m)x = (Y*" 0Dy, + m?)x
= (310"7"10,0, +m?)x = (09,0, + m*)x () (37)
= (00" +m*)x = 0.
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Dirac Equation

There is an operator that distinguishes the different chiral spinors
inside a Dirac one, the chirality operator

)
7" =i’y = = e (38)
with €"123 = —¢j193 = 1. In the chiral representation ~° is diagonal
-1 0
5
and in general satisfies
() =1+,
() =1, (40)
{v°,7"} =0.
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Dirac Equation

If x satisfies the Dirac equation, then
(—ir" 8 — m)y°x = 7’ (Iv" 0, — m)x = O, (41)

and therefore, 79y also satisfies the Klein-Gordon Equation. It can be
shown that the most general solution to the Klein Gordon equation for
spin 1/2 fields can be written in terms of two solutions to the Dirac
equation y; and y» as (Cufaro Petroni et al, 1985)

Y = \/;—m(xl +9°x2). (42)
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Second Order Fermions

Second Order Fermions

Is it possible to describe the dynamics of a spin 1/2 particle using the
Klein-Gordon equation?
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Second Order Fermions

Second Order Fermions

Is it possible to describe the dynamics of a spin 1/2 particle using the
Klein-Gordon equation?

Yes
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Second Order Fermions

Second Order Fermions

Is it possible to describe the dynamics of a spin 1/2 particle using the
Klein-Gordon equation?

Yes

2311.06466 [hep-th]
Rodolfo Ferro-Hernandez, Julio Olmos, Eduardo Peinado, CAV-A
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Second Order Fermions

Naive Theory

The simplest second order theory for free spin 1/2 fermions is
described by the Lagrangian

£0 - au";alﬂb - mzl/_”/} (43)
where the Dirac dual is defined as ) = 1)+, rendering the theory

Lorentz invariant. The corresponding equations of motion coincide with
the Klein-Gordon equation for each component of the field and its dual.
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Second Order Fermions

Observations

@ The conjugate-momenta are given by 12 and ¢) Without imposing
further constraints, this second order formalism is described by a
spinor with 8 degrees of freedom, the double compared to Dirac.

@ The mass dimension of the field is one, in sharp contrast with
Dirac spinors which have mass dimension 3/2.
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Second Order Fermions

Unfortunately this simple theory has an undesirable feature. It can be
shown that if the following canonical anti-commutation relations are
imposed at equal times

{alet) 5 )} = = {Dalx,8), ds(x, 1) } = 60507 (x = x'), (44)

an indefinite metric problem emerges, leading to the presence of
negative norm states in the spectrum (Kibble and Polkinghorne,1958).
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Second Order Fermions

In this talk, we show that the canonical quantization of second order
fermions is possible by the adoption of a pseudo hermitian quantum
field theory through an adequate redefinition of the dual field and the
identification of an operator n such that

L =g Lin="L. (45)
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Second Order Fermions

Pseudo-Hermitian Quantum Mechanics

The dynamics of the pseudo-hermitian quantum theory with
H# =y~ H'y = H are guaranteed to be unitary if the inner product
between two states is defined as

(alb), = (alnb) . (46)
In this way, probability amplitudes are preserved under time evolution:
(a(®)[b(t)),, = (a ™ tne= Mt b) = (a| e e~ b) = (alb), . (47)
Similarly, the new inner product renders the energy spectrum real
(E - E%) (aplag), = (ap| (nH — H'y) lap) =0, (48)

where the state |ag) is an energy eigenstate H |ag) = F |ag).

C.A. Vaquera-Araujo Second Order Fermions June 6, 2024 29/51



Second Order Fermions

Pseudo-Hermitian Second Order Fermions

The Lagrangian for the spin 1/2 field is given by
L = 9Pyt — m* i, (49)

where zZ is not the Dirac adjoint of ¢, but instead a redefinition of its
dual that renders the theory pseudo-hermitian.

b =0t = i (50)
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Second Order Fermions

It can be shown that if ) is the most general solution to the
Klein-Gordon equation for spin 1/2 fields

Y= Jl—(m +9°x2),

2m
then, the dual ¢ that renders the theory pseudo-hermitian is

~ - 1 4 . 1 o
v=n""n = ﬁﬁ ' — X7 = ﬁ(?ﬁ +X27°).
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Second Order Fermions

Expanding ¢ and zZ into plane waves, we have

d3p s 1s 5,5 28] —ipx

w(l’) = /(271_)32\/{”Wp Z{ [upap +")/ upap :| e P
+ [opbi + 2P0 eip-x}, (53)

- _ d3p —s _1st —s b _2st| Jipx

P(x) = o N Z [upap +upy’ap 'l e

+ [opbp” + 0570y e"'p'””}, (54)

with wp = ++/[p[? + m?, p = (wp, P), u;, vy, as the positive and
negative energy solutions of the Dirac free equation, and s = i%.
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Second Order Fermions

Thus, the action of the operator 1 is defined by
ntapn = (=107t T = ()T (85)

where j = 1,2. Assuming equal time canonical anti-commutation
relations

(a0, 05,00} = = {alc.1), 935, 1)} = 182569 (x — x'), (56)
we have
(a1} = (2m)67%6750 (b — ),

[ 0T} = (2267567250 (b — ),

with all other anti-commutators vanishing.

C.A. Vaquera-Araujo Second Order Fermions June 6, 2024 33/51



Second Order Fermions

An explicit solution for the operator 7 is given by

— ; d3p 2st 2s b28'}'b25 58
N =exp |im (zﬁ)gz(ap ap + by p) . (58)

This operator satisfies = n' and n,' = 1, meaning that > = 1, and
thus their eigenvalues are +1.
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Microcausality

Due to the redefinition of the dual implemented by the n operator, the
fields display the correct properties under microcausality. In particular,
we have

{Va(@),05()} = {Dal2), Dsv) } =0, (59)

and

{#a@), 951 } = Al — y)das

60
_/(‘f;o{e—ip(x—y) _eip~(:v—y)}5aﬁ (60)
27)32wp '

where A(z — y) is the well known Lorentz invariant and causal
Schwinger’s Green function.
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Second Order Fermions

Hamiltonian and Momentum

The Hamiltonian and the momentum operator are given by

H =: /d3x{$¢ + v{/J\' Vi + mQL/D\@Z)} :,
. (61)
P = —/dBX{{A\VI/J + V{b\w} :,

where : : stands for normal ordering. In terms of the momentum space
operators, the generators of space-time translations P# = (H,P) read

d3 ist js EIRNE
Pu:/(%‘)’gpﬂz{ayag, +b{,Tb{)}. (62)
7,8
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Spin

The spin of the field is
S —: —i / dx {@Jz/; - zﬁw} . (63)

where the components of J are given by J* = ewkj . One can
explicitly show that the field contains particles of spin 1/2

S3ad10) = sad’T10),  S%ET10) = bt |0) . (64)
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E—
Abelian Global Symmetry

The free theory of second order fermions is invariant under the phase
transformation

= =, = = e, (65)

where 6 is a constant real parameter. The conserved charge
associated to this U(1) global symmetry is

Qz:z’/d3x{w—$w}:

d*p — ki (66)
= X ok -
7,8
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Second Order Fermions

From the commutation relation of this operator with the creation and
annihilation operators, one can conclude that o™ and & have charge

+1, whereas o’ and " have charge —1. Labeling the one-particle
states with this eigenvalue, one can show that they are eight-fold

degenerate

HCL{)ST 0) < H |p,+,J,8) = wp P, +,7,8),

g . | (67)
Hb‘I]) ‘0> X H‘p7_7.778> :wp ’p7_7j78>'

C.A. Vaquera-Araujo Second Order Fermions June 6, 2024 39/51



Symplectic Symmetry

Since the field ¢ and its dual anticommute {1 (z), QZg(m)} =0, we can
write the free lagrangian as

1 pa T m? T

where U is a column matrix defined as

@T(w)>
U(xr) = , 69
@ =" (69
and Q2 is the 8 x 8 symplectic matrix, written in 4 x 4 blocks as
O4xa  laxa
Q= . 70
(14><4 04><4> (70)
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Second Order Fermions

Thus, the free theory is symmetric under the global transformations
U — U = S¥ with STQS = Q. This is the defining relation for an
element of the symplectic group Sp(8, C), whose algebra has 36
generators.
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Discrete Symmetries

The second order theory is invariant under Parity (P), Charge
conjugation (C) and Time reversal (T), and therefore under CPT. We
define the discrete transformations of the v field through their action
on the creation operators, as follows:

PalsTP~! = —i(—1) el PustPl = —i(—1)7 1S
1 1

—p° —p’
CalftC™! = bist, Coite = ol (71)
Tal' T~ = 250’71, THTT =1 = 26591,
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Second Order Fermions

With this choice, the discrete transformations have the familiar
representations

Py(2)P~' = in%(Pz), Pi(z)P~! = —ih(Px)y°,
Cy(z)ct=cpT,  cypct=yTC (72)
Ty(x)T' = Cy°¢(Tz),  TYT~! = —(Ta)y’C,

where we have defined P = diag(1, —1,—1,-1), T = diag(—1,1,1,1),
and C = —iv?+Y in the chiral representation.
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Interactions

The simplest C, P and T invariant pseudo-hermitian interactions that
can be introduced in this framework are 4-fermion self-interactions
represented by a dimension-four renormalizable operator

sef :% (;Ew)Q + % (97°0) (@7°0)
+ % (&Mu%ﬁ) (@Mww) )

with M = 7.
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Second Order Fermions

The spin 1/2 field can also be coupled with an abelian gauge field
according to

1 ~ ~
Lgauge = — ZFWFW + DT“wGWD”w — m2y (74)

where D, = 9, +iqA,, is the covariant derivative, and we have
introduced the space-time tensor

G = g — igMM, (75)

to produce a theory analogous to Scalar QED, supplemented with a
Pauli interaction characterized by the coupling constant g, that can be
identified as an arbitrary gyromagnetic factor. The resulting
pseudo-hermitian interaction Lagrangian is

LI = iq[o"fp — GO Y| A, + PPY AP A, — T EMpF  (76)
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Second Order Fermions

The one loop renormalization properties of this theory have been
studied in arXiv:1205.1557 [hep-ph]. The beta functions and
anomalous dimensions of the theory at one-loop are

3
_4 (32_
be =19 <49 1>’

By =55 [0 (9% = 4) = 400 + 2o = 303)].

1 3 40 2
Br =~ 153 {461 (* —4)" +3¢% [(4+¢%) M + g°Xs5]
+4Xo (A1 + A2) +6A3(2M\1 + A3) }

B, = —

1
163 13¢° [(446%) A2 + g%As] + 422 (31 — ho) +6A3 (202 + As) }

Brs = — 161?2 {@® [(12 = g%) A3 + 20 (A1 + A2)] +4X3[3(A1 + X2) — 23]} .
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Second Order Fermions

Fixed points for 3,

o Dirac-like configuration {g = +2, \; = Ay = A3 = 0}, the
renormalization group equations (RGE) coincide with those
obtained in the Dirac framework, except for the number of degrees
of freedom propagating inside the fermion loops, the double
compared with respect to Dirac.

@ Scalar-like solution g = 0 with arbitrary self interactions \;. In this
scenario the fermi statistics drive /3, negative. Thus, at one loop
level, the solution ¢ = 0 with vanishing self-interactions displays
asymptotic freedom for the coupling q.
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Second Order Fermions

Conversely, in the limit of vanishing gauge interactions ¢ = 0, g = 0, we
have a renormalizable theory of self-interacting fermions with rich
phenomenology. Taking, for example, A1 = A\, Ay = A3 = 0, we obtain
the simplest model of self-interacting fermions

N U N
£= 090, — m?Dv + 5 (0)” (77)

with vanishing one-loop beta function 5, = 0.
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Wimp Dark Matter

The second order fermion can couple with the Higgs field H through a
quartic dimensionless coupling

Lo =1 (v) HH. (78)

Furthermore, since i) has nothing to decay in, it is stable and could
play the role of Wimp dark matter through a Higgs portal.
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Conclusions

Conclusions

@ Spin 1/2 fermions can be successfully described by a second
order formalism, provided the underlying Quantum Field Theory is
pseudo-hermitian.

@ Second Order Fermions are causal, with real spectrum,
Hamiltonian bounded from below, unitary evolution and CPT
invariance.

o The field contains 8 degrees of freedom

@ Since the field has mass dimension one, the theory contains
renormalizable self-interactions.

@ The field is a Wimp Dark Matter candidate.
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Conclusions

Thanks
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