The small PMT : operation and performances

Antonella Castellina INFN and INAF - Torino

<u>Contributions from</u> INFN-Catania INFN-Napoli INFN-Torino IPN-Orsay Malargüe staff

AugerPrime electronics Operation Readiness Review, April 14, 2024

Small PMT unit

1510 units to be installed (excluding the external border of 150 stations)

- 1477 already installed
- 33 missing (25 in forbidden areas, 8 due to problematic installation)

1 unit =

- * sPMT R8619
- HVPS A7501
- mechanics
- cables

sPMT - production

• All specifications for production collected in EDMS PAO-000273-ProductionsPlan

Oatasheets, descriptions and tools collected in EDMS PAO-000274-ProductionDocuments

AugerPrime Electronics ORR, April 14, 2024

1- Tests before shipping - by providers

- All parts of the SPMT units have been tested
- Ocumentation in EDMS PAO-000275-TestAssemblyProcedures
- Results in EDMS PAO-000276 and PAO-000267—TestReports and Link to test results

Dividers

- tested by NeOhm Co. before delivering to Hamamatsu
- some gold plated soldering points discolored : defective bases discarded by Hamamatsu, NeOhm agreed to replace them
- reason: thickness of deposition under specs

SPMT with flying leads

- tested by Hamamatsu (requirements checked)

HVPS - tested by CAEN

Required converter specification	Range & accuracy	
Main voltage supply	$V_{cc} = 12\mathrm{V} \pm 5\%$	\checkmark
Temperature range	$-20^{\circ}C < T < 60^{\circ}C$	\checkmark
Output voltage V_{out}	$V_{min} = 0V < V_{out} < V_{max} = 2100V$	\checkmark
Input command V_{cin}	$0 < V_{cin} < 2.5V \ (V_{cin} = 2.5V \text{ at } V_{max})$	\checkmark
Output voltage monitor V_{mon}	$0 < V_{mon} < 5V (V_{mon} = 5V \text{ at } V_{max})$	\checkmark
Power absorption	P_{abs} < 500 mW at V_{max}	\checkmark
Uniformity of output voltage V_{out}	- 10=3	- /
for a constant V_{cin} command	$< 10^{-5}$	V
$\triangle V_{out}/V_{out}$ fluctation vs V_{cc}	$\bigtriangleup V_{out}/V_{out} < 1\%$ at $V_{out} > 500 V$	\checkmark
Integral non linearity for V_{out} vs V_{cin}	$<~2\cdot 10^{-3}$ at $V_{out}~>500V$	\checkmark
Integral non linearity for V_{mon} vs V_{out}	$<2\cdot 10^{-3}$ at $V_{out}>500V$	V
Termal stability $ riangle V_{out}/V_{out}$. T	$< 10^{-4} {}^{\circ}\mathrm{C}^{-1}$	\checkmark

Elettroniche Nucleari C.A.E.N. S.n.A traia, 11 - 55049 Viareggio (LU) - Italy 0584 388 398 - fax +39 0584 388 959

Viareggio, March 30th 2018

Ricci Giacom

0.0024077

A7501PB – s/n 159

/set (V)	Vout (V)	Vmon (V)	Imon (V)	lin (mA)	PWR_in (mW)	Vout/Vset	Vout/Vset INL	Vout/Vmon	Vout/Vmon INL	Imon/Vset	Imon/Vset INL
0,0011	14,4174	0,0256	0,0088	4,5361	56,0845	12826,8786	54,28%	562,6702	-8,14%	7,8158	65,33%
0,0980	86,1153	0,1959	0,0570	7,4485	92,0941	878,2884	-2,26%	439,6410	-1,23%	0,5818	-1,72%
0,2017	174,4525	0,4054	0,1166	8,6631	107,1110	865,1081	-0,39%	430,3298	-0,47%	0,5781	-0,20%
0,3034	260,1415	0,6087	0,1743	9,6186	118,9258	857,4322	-0,20%	427,4017	-0,23%	0,5745	-0,13%
0,4037	344,7160	0,8095	0,2313	10,4990	129,8108	853,8597	-0,07%	425,8555	-0,13%	0,5729	-0,05%
0,5008	426,5719	1,0037	0,2865	11,3259	140,0342	851,7964	0,00%	425,0046	-0,06%	0,5721	0,00
0,6008	510,6580	1,2033	0,3431	12,1854	150,6619	850,0144	0,01%	424,3774	-0,02%	0,5712	-0,02
0,7044	597,9467	1,4103	0,4020	13,1063	162,0482	848,8811	0,04%	423,9839	0,02%	0,5706	-0,019
0,8026	680,5937	1,6066	0,4577	13,9784	172,8304	847,9418	0,05%	423,6166	0,03%	0,5702	-0,01
0,9004	762,8796	1,8020	0,5132	14,8608	183,7412	847,2995	0,06%	423,3631	0,05%	0,5699	0,00
0,9967	843,6253	1,9938	0,5676	15,7408	194,6211	846,4304	0,03%	423,1190	0,05%	0,5695	-0,04
1,1039	934,0836	2,2087	0,6287	16,7468	207,0589	846,1454	0,06%	422,9037	0,06%	0,5695	0,01
1,2037	1017,2762	2,4075	0,6851	17,6903	218,7254	845,1461	-0,01%	422,5429	0,02%	0,5692	-0,01
1,2960	1093,9935	2,5915	0,7374	18,5764	229,6805	844,1621	-0,08%	422,1473	-0,04%	0,5690	-0,02
1,4007	1182,0961	2,8012	0,7970	19,6010	242,3491	843,9222	-0,07%	421,9978	-0,05%	0,5690	-0,01
1,5041	1269,3130	3,0083	0,8558	20,6230	254,9846	843,9121	-0,04%	421,9399	-0,03%	0,5690	0,02
1,5985	1348,9342	3,1974	0,9095	21,5661	266,6461	843,8549	-0,02%	421,8890	-0,02%	0,5689	0,03
1,7005	1434,6796	3,4011	0,9673	22,5933	279,3461	843,6637	-0,02%	421,8265	-0,02%	0,5688	0,02
1,8007	1519,0240	3,6016	1,0242	23,6157	291,9877	843,5578	-0,01%	421,7680	-0,01%	0,5688	0,03
1,9049	1606,4866	3,8093	1,0832	24,6864	305,2255	843,3651	-0,01%	421,7305	0,00%	0,5686	0,02
2,0023	1688,5989	4,0044	1,1386	25,7006	317,7649	843,3313	0,00%	421,6861	0,00%	0,5686	0,02
2,1049	1774,7725	4,2093	1,1966	26,7732	331,0272	843,1796	0,00%	421,6362	0,00%	0,5685	0,01
2,2042	1858,3829	4,4081	1,2528	27,8214	343,9875	843,1134	0,01%	421,5869	0,00%	0,5684	0,00
2,3005	1939,4036	4,6007	1,3069	28,8512	356,7198	843,0262	0,01%	421,5484	0,01%	0,5681	-0,04
2,3962	2019,8343	4,7919	1,3613	29,8707	369,3250	842,9308	0,01%	421,5077	0,01%	0,5681	-0,03
0 5017	2108,9869	5.0036	1,4216	31,0193	383,5261	843,0249	0,03%	421,4944	0,01%	0,5683	0,00

1- Tests before shipping - at INFN labs

PMT test (INFN-Napoli)

- 16 sPMT tested in one shot
- Double dynamics front-end: x12 amplifier for SPE/MIP measurements, /7 attenuator for linearity
- results in MySQL database ansd ascii

[M.Buscemi et al., JINST 15 (2020) 07, P07011]

EDMS PAO-000275-Test and assemby procedures

HVPS test (INFN-Torino & Catania)

- two identical test systems
- tests at room temperature and in climatic chamber
- results in https://pandora.infn.it/public/b4022a

[G.Anastasi et al., JINST 17 (2022) T04003]

1- Tests before shipping - at INFN labs

PMT test (INFN-Napoli)Only 2 out of 1290 discarded

HVPS test (INFN-Torino & Catania)

- ~150 HVPS rejected and replaced (bad soldering for one pin+one bad component identified)
- All modules in agreement with specifications

More tests: sPMT dependence on Temperature

[GAP2016-078]

7

Components sensitive to temperature

- ➡ High Voltage Power Supply
- PCB + Divider

$$\left(\frac{\Delta G}{G\Delta T}\right) < 3\%$$

$$\frac{|\Delta H V_{out}|}{H V_{out} \Delta T} = 2.5 \ 10^{-5} / {^{\circ}C}$$

Photomultipliers [contributions from dynode multipliers and Photocathode Quantum Efficiency]

2- Test before deployment - at SDEco

EDMS PAO-000275-Test and assemby procedures

Light source (Scionix ²⁴¹Am-YAP:Ce), ~22 Bq, providing pulses of constant intensity at ~15 Hz.

- fast and simple checks by oscilloscope at the required SPMT gain: <P> and <Q> averaged over 512 pulses
- result largely independent of acquisition threshold: robust technique to monitor the gain at % accuracy in few mins

• database with results available at SDECo

THRs [mV]	<peak> ₅₁₂ [mV]</peak>	<q> ₅₁₂ [nV/s]</q>
20	284	10.6
40	291	10.9
60	292	10.9
80	294	10.9
100	293	11.0
120	293	11.0
140	295	11.0

sPMT - problems from the field

Only 16 SPMTs since their deployment experienced problems affecting their performances. EDMS PAO-000276-SPMT Problems at test and field

• Water/humidity damage to the divider components

- cause: incomplete sealing due to missing silicone application at production (Zener)
- All SPMT deployed after November 2022 properly sealed by the local staff

- cause: probably originated by humidity
- almost always solved by changing the base

- Transmission problems in monitoring data
 - cause: still unknown, under study

sPMT - problems from the field

Only 16 SPMTs out of 1547 installed units experienced problems affecting their performances. In 12 out of 16 cases, the SPMT was installed prior to November 2022 —> no correct sealing

No failures found on SPMT tube or HVPS up to now (~1 year) Malfunctioning in the field difficult to solve: either sporadic or due to environmental causes that disappear in lab

However, checking contacts and/or replacing the divider solves most problems

Note that

- the dividers have only passive components
- low cost ~15€/unit
- a large batch of spares is available (>370)

sPMT - spare parts

Ophotomultipliers+base+cables+mechanics

- 1477 installed, 33 still missing
- 148 spare units

- Dividers
 - 66 remaining from the production
 - other two batches of 150+160 bases have been produced
 - 376 spare units
- HV modules
 - 185 spare units
- Control cables (HV to UUB)
 - 129 spare units

Oliver Clamps

- 400

EDMS PAO-000276-SPMT Spare parts

AugerPrime Electronics ORR, April 14, 2024

- 2491841 (v.1) Specifiche per la procedura di assemblaggio di 800 fotomoltiplicatori Hamamatsu R8619SEL-10 MOD3.
- 2491843 (v.1) Test bench and validation for the CAEN A7501PB HV-boxes of AugerPrime
- 3071162 (v.1) Validation of high voltage power supplies for the small PMT
- 3071263 (v.1) Procedure for the test of SPMT with YAP light source
- Deployement PAO-000263
 - 2175217 (v.1) SPMT INSTALLATION PROCEDURE
 - 2804588 (v.2) SPMT Sealing procedure

The local staff is fully trained to perform all activities related to the SPMT Reference person : Juan Pablo Gongora

2273463 (v.1) Link to the Tests Results repository

sPMT - setting and calibration

[GAP2022-018]

Only ~1 phe/muon, due to small area

Exploit *local small showers* (~200/hour) : T1 events selected requiring a 2-fold coincidence among the LPMTs signals above a threshold S_{peak}(LPMTs) changing with the individual LPMTs counting rates.

Small showers are used to:

- ➡ Set the HV allowing to measure signals <u>without saturation</u> at least up to 20,000 VEM
- Cross-calibrate the SPMT against calibrated signals from the LPMTs

...and they can provide a continuous monitoring of the LPMTs

sPMT - HV setting

GOAL : set the HV allowing to measure S_{target} = 22,500 VEM (±10%)

Saturation determined by the FADC dynamic range DR = 4095 - baseline ~ 3845 FADC counts In first approximation $Q_{max} = AoP_{ref} \times DR$ Thus, for the SPMT signal $S_{max} = AoP_{ref} \times DR \times \beta$ where AoP_{ref} is the signal width and β the calibration factor

Procedure performed on-tank using small showers in 12h blocks and comparing S_{max} to S_{target} Optimal result reached after 12 hours (one HV change)

- Automatic procedure activated in July 2023
- code maintained in the SDE/UUB/DAQ gitlab repository

sPMT - Dynamic range

Maximum signal without saturation S_{max} estimated using small showers data

GOAL : set the HV allowing to measure signals <u>without saturation</u> at least up to 20,000 VEM

➡Procedure succesful in almost all SPMTs (~1% failure)

→Bad periods are due to loss of small shower files

sPMT - calibration

[GAP2022-018]

Small showers stored by CDAS-DAQ in one spmt_yyyy_mm_dd.root file per day with data from ~00:00 to ~23:59 of dd/mm/yyyy from the whole array (< 300 MB/day)

Codes in the <u>SDEU/UUB/daq</u> and <u>CDAS-DAO</u> repositories

sPMT - calibration

Only ~1 phe/muon, due to small area Cross-calibration against LPMT calibrated signals using local small showers (~200/hour)

 $S_{\text{SPMT}}[\text{VEM}] = \beta \times Q_{\text{SPMT}}[\text{FADC counts}]$

- Calibration parameter β determined every hour with ~2.2%
 precision using data from 8 hour sliding windows
- Daily evolution in β : <u>+</u>8% (anode sensitivity from lab measurements -0.38%/⁰C, daily excursion ~20⁰C)

Calibration running on CC-IN2P3 (<u>code in the gitlab repository</u>) producing 1 ROOT file per day for the whole array, stored in /sps/pauger/users/ganastasi/SPMTcalibration_results/v2r0/

[GAP2022-018]

Stability of cross-calibration

AugerPrime Electronics ORR, April 14, 2024

Stability of cross-calibration

AugerPrime Electronics ORR, April 14, 2024

Evolution with time

AugerPrime Electronics ORR, April 14, 2024

sPMT - monitoring

Monitoring of small showers acquisition <u>partially</u> implemented

- codes under augermonitoring
 - calculation of 1h-averages
 - filling of the MonitSmallShowers table (see also next slide)
- alarms under development

- "Hardware" (i.e. SlowControl) monitoring in common with the other components.
- alarms missing for all AugerPrime detectors
- ➡ should add check of SPMT
 V_{mon}/I_{mon} ratio

Conclusion

Failures

- All failures during production and tests in labs identified. Bad units replaced by providers
- ➡ No SPMTs discarded after delivery to Malargüe

Maintenance

- 16 out of 1477 SPMTs inspected due to suspect malfunctioning in the field. None due to the tube, solved by replacing the PMT base.
- ➡ failures in cross-calibration: <5% due to LPMTs</p>

Spares

Sufficient number of spares for all parts of the SPMT units

Software

- Cross-calibration software chain in place
- <8% failures in custom VEM evaluation</p>
- Monitoring to be completed

Documentation and training

- Docs and procedures available in EDMS
- ➡ Local staff trained and expert

Backup

sPMT production organization

Ground connections for the HV CAEN A7501PB module

Fig. 5 A7501PB Front panel, LEMO HV and 4-pin Mini XLR connectors for Auger IMON

Mini XLR

- Pin1: GND
- Pin2: n.c
- Pin3: Imon .
- Pin4: n.c ٠
- Not the entire metal enclosure of ٠ the HV module is electrically connected to GND. Only the panel housing the Mini XRL and Lemo HV connectors is wired at GND, anyway the white paint must be removed to have a good contact.

Fig. 6 A7501PB Back panel with DB15 connector

DB15

- Pin1: Vmon
- Pin2: Vset
- Pin3: Imon
- Pin4: n.c
- Pin5: +12V Pin6: GND
- Pin7: GND
- Pin8: n.c.
- Pin9; n.c
- Pin10: GND
- Pin11: n.c.
- Pin12: GND
- Pin13: n.c
- Pin14: n.c.
- P1n15: n.c.

HVPS attached with the same screw used for radio (SU), possible even when radio is present

Another solution: attach it in the TPCB side, moving back the TPCB box and thus releasing a screw as the module cannot be fixed due to the height of the TPCB box which interferes with the cables outlet of the HV module

More tests: sPMTdependence on magnetic field

[GAP2016-007]

the Earth magnetic field can affect the performances of PMTs depending on their orientation :

- deflections in phe trajectories drifting from photocathode to first dynode
- deflection of secondary e- in the dynode chain

max deviation ~2-3% no need for a magnetic field shielding

sPMT - Dynamic range

Stability of cross-calibration

Daily average of the inter-calibration factor

Stability of cross-calibration

AugerPrime Electronics ORR, April 14, 2024

Instabilities over time

AugerPrime Electronics ORR, April 14, 2024

sPMT - problems

sPMT - problems from the field

Chiron - unstable I_{mon}

- PMT changed
- Removed PMT retested in SDEco -OK
- Divider changed even if found clean
- Insulating acrylic paint applied and sPMT container resealed

ChicaBlu - no I_{mon} Bad contact between the connector from PMT(I_{mon}) and the one of the HVPS. Reconnection solved the problem

sPMT - signal accuracy

SPMT signal (relative) accuracy:

- ✤ ~10% @ LPMTs saturation
- ✤ ~6% @ highest signals
- ★ Extrapolated maximum bias at highest signals: (2.8 ± 2.0)%

Relative SPMT signal accuracy

$$\frac{\sigma_{S_{SPMT}}}{S_{SPMT}} = \sqrt{a^2 + \frac{b^2}{S_{SPMT}}}$$

evaluated using 1 month of small showers data from 300 SPMTs:
 a = (5.8 ± 1.1) %

$$b = (1.8 \pm 0.2) \text{ VEM}^{1/2}$$

✓ consistent results obtained with simulations of UHE p/Fe-initiated showers in UUB twin stations

sPMT - perfomances

sPMT - codes

- ➡ Small showers acquisition
 - Local station DAQ: <u>SDEU/UUB/daq</u>
 - CDAS-DAQ: <u>Apps/SPMT</u>
 - example code to read small showers files: <u>spmt_example</u>
- ➡ <u>SPMT HV setting</u>
- ➡ Small showers acquisition monitoring (running in Lyon)
 - <u>calculation of 1h-averages</u>
 - <u>filling of the MonitSmallShowers table</u>
- → <u>SPMT inter-calibration</u> (running in Lyon)
- → SPMT inter-calibration inclusion in the SD files production (running in Lyon)
 - IoSdCalibSPMT class in <u>IoSdData.h</u> & <u>IoSdData.cc</u>
 - <u>SdExtraData.cc</u> & <u>SdExtraData.h</u>

sPMT - monitoring

phpMyAdmin 3 Server: paomondb > 👜 Database: AugerMonitor > 🏢 Tabella: MonitSmallShowers "Table filled with spmt_ data averaged over 1 hour." Mostra Struttura SQL 🖉 Cerca 👫 Inserisci 🎬 Esporta 🛗 Importa % Operazioni 📲 Svuota 😿 Elimina 🚰 🔛 🖾 🖾 Campo Collation Attributi Null Predefinito Extra Azione Tipo Databas 🔲 🧷 🗙 🕅 🔟 4 T Time No datetime AugerMonitor (70) int(10) UNSIGNED 0 GPSsec No T X 1 υ 1 AugerMonitor (70) UNSIGNED Lsld smallint(5) No × 8 U 1 T AlarmDefinitionTab UNSIGNED Events smallint(5) No Т 1 X R υ 4 AlarmLimitTab AlarmTab EventsLPMT1 UNSIGNED T smallint(5) No 0 X 1 U 1 Alarm View arqdaily ChargeLPMT1overChargeSPMT float(6,2) No P X R υ 1 argresults BadPeriod BadPeriodDetails PeakLPMT1overPeakSPMT float(6,2) No 10 × 7 υ 4 Т BadPeriodItems BadPeriodReview SignalLPMT1overChargeSPMT float(6,3) No × U 4 T CDASInfos CLFTab AreaOverPeakLPMT1 No float(6,3) × 1 U 4 T DaqUUB FDBadPeriod FDBadPeriodDetails EventsLPMT2 smallint(5) UNSIGNED No = 0 × **U** 1 ChargeLPMT2overChargeSPMT float(6,2) No × 1 U 3 FDBadPeriodItems FDBadPeriodReview PeakLPMT2overPeakSPMT float(6,2) No FdCDASVeto FdCDASVetoType SignalLPMT2overChargeSPMT float(6,3) No × R U 4 Т HexagonStatu AreaOverPeakLPMT2 float(6,3) No 1 \mathbf{X} υ HorizontalTab IKMessage EventsLPMT3 UNSIGNED No smallint(5) × U := 4 IKT3
 LidarEventTab ChargeLPMT3overChargeSPMT float(6,2) No × U Τ LidarEventView LidarRunTab PeakLPMT3overPeakSPMT No float(6,2) 1 \mathbf{X} U Z Т LoggerEA LongTermMonitCalib LSAgeingIndicators LSDates SignalLPMT3overChargeSPMT No T float(6,3) \mathbf{X} 1 U 1 AreaOverPeakLPMT3 float(6,3) No X U 4 0 LSDeploym Metrics **EventsLPMTsAvg** smallint(5) UNSIGNED No × R Πu MonitCalib MonitSmallShower AreaOverPeakSPMT float(6,3) No × 1 T 1 U MonitUUB **SDAlarmFreez** AreaOverPeakSSDHG float(6,3) No X 1 U 3 T SDAlarmMask SDBattery AreaOverPeakSSDLG float(6,3) No × 1 U 1 1 SDCalib SDDataFiles SDMaintenance CustomVEMChargeLPMT1 float(6,2) No X 1 υ 4 SDMaintenanceAction CustomVEMChargeLPMT1Failures float(6,2) No := × U 1 0 **SDMaintenanceActionRef** SDMaintenanceAlarmMask MaskedStatusLPMT1 float(6,3) No 1 U 4 X SDMaintenanceFailureCategoryRet ThresholdLPMT1 SDMaintenanceFailureRef float(6,2) No 1 \mathbf{X} 1 U 1 T SDMaintenanceFileUpload OnlineVEMChargeLPMT1 No SDMaintenanceIntervention float(6,2) \mathbf{x} 1 **U** SDMaintenanceInterventionAction HgLgChargeRatioLPMT1 float(6,3) No 7 Y T SDMaintenanceInterventionUse × U SDMaintenancePriority CustomVEMChargeLPMT2 float(6,2) No 1 Z T \mathbf{x} U SDMaintenanceSystem SDMaintenance_tmp CustomVEMChargeLPMT2Failures No 3 float(6,2) × U T SDPMTAlarmFreeze SDPMTAlarmTab MaskedStatusLPMT2 Г float(6,3) No \mathbf{X} 1 υ SDQualityCutDefinitionTab SDQualityCutTab ThresholdLPMT2 float(6,2) No 4 T × U SDQualityCutVersionValidity SDT2Inconsistencies OnlineVEMChargeLPMT2 No T float(6,2) \mathbf{x} R U Z SDT3Errors StSTab HgLgChargeRatioLPMT2 float(6,3) No 1 X T U 1 T systemBSU systemSU CustomVEMChargeLPMT3 float(6,2) No X 0 R U 1 T2LSInfos T2LSNoData CustomVEMChargeLPMT3Failures No float(6,2) X U 1 Т T2LSStatus VAODTab MaskedStatusLPMT3 float(6,3) No Z T \mathbf{x} υ Weather WeatherTab ThresholdLPMT3 float(6,2) No U 1 T 2 X OnlineVEMChargeLPMT3 float(6,2) No × **I** υ 1 HgLgChargeRatioLPMT3 float(6,3) No 7 U 3 × CustomMIP No float(6,2) U 4 1 CustomMIPFailures float(6,2) No 1 × R U 1

MonitSmallShowers table added to the AugerMonitor database

Daily and separately for each tank with a sPMT, check of :

- presence of acquired data (i.e. number of entries in the table);
- number of small showers (*Events*);
- And separately for each LPMT :
 - masked status
 - (MaskedStatusLPMT1-2-3);
 - percentage of failed VEM calibrations using the custom algorithm (CustomVEMCharge LPMT1-2-3Failures);
 - number of events above 200 VEM (EventsLPMT1-2-3);
 - LPMT signal over SPMT charge ratio (SignalLPMT1-2-3over ChargeSPMT).

43 variables - 24 entries per day per UUB tank

AugerPrime Electronics ORR, April 14, 2024