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QGP - the matter of the early Universe
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QGP - the matter of the early Universe

Which one is the “closest” to the early Universe?

C) Abstain (now) B) pp collision
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QGP - the matter of the early Universe

Which one is the “closest” to the early Universe?

A) PbPb collision C) Cup of coffee B) pp collision

ui A
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Outline

1) Earlier studies
- What is UE? Why is this important for in HEP?
- theory, experiment, measures

2) New developments on UE

- Angular properties measures
- multiplicity, p, spectra, parameter derivatives
— Tsallis thermometer

3) Comparison to event shape variable
- Spherocity measures and cross check

4) Collision energy dependence

- Can we quantify the UE definition?
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UE
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Anatomy of a proton-proton event

©
J./l P * \ﬂ‘ 10\\.‘0 =
r oe t @ s &\ (o]
wad | Ll 7 S
L a\ e _ I W

no
Qoo
DRI TR T

Vo
.//'9
e

0o . L
/

500!

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

G.G. Barnafoldi: ICN UNAM Seminar 2023



Anatomy of a proton-proton event

----------------------------------------------------------------------------------------------------------------

- 4 Hard process

¢ Depends on the physics
model (SM, BSM,...)

¢ Perturbative QCD
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Anatomy of a proton-proton event

----------------------------------------------------------------------------------------------------------------

e k.; .. 4 Hard process
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Anatomy of a proton-proton event

----------------------------------------------------------------------------------------------------------------
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So what Uderlying Event is?

* Theoretical point: Parton Shower
. . Hadronisation gl (Inltla| and final
- Mainly non-perturbative QCD effect modelling g state radiation)

— Initial & final state radiation
- Multiple parton interaction
— Color Reconnection (CR)

= intrinsic k
T Beam remnants, Multiple parton
interactions

- Hadronization PHMOIIALY, = Rt
AR s (Underlying Event)
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- Mainly non-perturbative QCD effect

So what Uderlying Event is?

* Theoretical point:

- |nitial & final state radiation
- Multiple parton interaction
— Color Reconnection (CR)

- intrinsic k;

— Hadronization

Experimental point

Pedestal-like effects
— Activity in the event over MB
- Beam remnants (pile up)
— Trigger bias (jet criterion)

Parton Shower
(initial and final
state radiation)

Hadronisation
modelling

Beam remnants,

. dial k Multiple parton
primordial k_

. ;_.).\ E Tea interactions
TEUAN A (Underlying Event)
dn/dy

jet

underlying |event

/ \ -- pedestal height
Y
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Earlier studies, motivation
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Geometrical structure of an event
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Geometrical structure of an event

Leading particle
/\ gp

/3

Transverse Side
W3 < IA¢GI < 27/3

Transverse Side
a3 < IAq;ni < 271/3

Away Side
IA¢OI > 21/3

Standard CDF definition
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How to separate jet & UE?

* Jet finding & elimination:

- Surrounding Band (SB method),
Find a jet, THEN define SBs

- |IF SB, and SB, are equal, THEN
eliminate the jet

- expensive (high statistics)
— sensitive to cuts

leading/near jet A

lead,1

* Correlation & background

- Traditional method by CDF
- burte force n away

SBaway,Z n
SB-based UE

— geometry info only CDE UE

See: BGG et al: J.Phys.Conf.Ser. 270 (2011)
012017,AIP Conf.Proc. 1348 (2011) 124,
EP] Web Conf. 13 (2011) 04006 G.G. Barnafoldi: ICN UNAM Seminar 2023 16



New development to understand UE
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The simulated data

* PYTHIA v8240 Monash 2013 tune

- 1 billion non-diffractive collisions of pp Parton Shower
B _ _ Hadronisation (initial and final
C.m. energy: Vs = 13 TeV nodelling ctilE i lion)

- Includes 2— 2 hard scattering process,
followed by initial and final state parton
showering, multiparton interactions, and
the final hadronization process.

-~ The events having at least three primary ,

Multiple parto
charged particle with transverse primordial k. ; ultiple parton
: AT L% Interactions
- Min. momentum: p; > 0.15 GeV/c TUANLY (Underlying Event)

- Pseudorapidity: |[n| < 0.8

- UE: Color Reconnection (CR, Multiple
Parton Interaction (MPI) ¢ g samaoldi: ICN UNAM Seminar 2023 19



Angular structure of an event

Leading particle

N\

Transverse Side
W3 < IA¢nI < 2n/3

Transverse Side
3 <lAg | = 2:/3

Away Side
IA¢ﬂI > 21/3

-21/3

Standard CDF definition
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Angular structure of an

{.eading particle

Transverse Side
W3 < IA¢nI < 2n/3

Transverse Side
3 <lAg | = 2:/3

Away Side 21/3
IA¢ﬂI > 2n/3

-21/3

Standard CDF definition
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Sliding angle, cake slices
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Sliding angle, cake slices

- We make slices of the Ag of size 20°. In this
case, the results for the first bin 0 to 20°. are
reported in two ways: including and excluding
the leading particle in the result. Case |l is a tool

for exploring the geometrical structure of the
Underlying Event.
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Multiplicity/MB

PYTHIA multiplicity with sliding angle

- PYTHIAs model UE: CR & MPI S8
- Good fits with the parametrizations Fl2
- More multiplicity az NS o
- TS & AS are mainly flat T
- With leading particle

deviation is increased

— B NOCR
1 1 l 1

NS

[

with leading particle

® Monash Tune

TS

TS

Monash Tune (open symbols

—No CR

NS
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Multiplicity/MB

PYTHIA multiplicity with sliding angle
- PYTHIAs model UE: CR & MPI 1
- Good fits with the parametrizations z
- More multiplicity az NS
- TS & AS are mainly flat
- With leading particle

deviation is increased

ﬁ 3 B T | T T | T T | T | |_
3 ""‘j - NS TS AS TS NS ]
Z 25 — —
Leading particle B ]
_. —
05f with leading particle Monash Tuné (open symbols)_:
.~ @ Monash Tune _
~ M NOCR —No CR .

0 [ | [ [ L | | | [ | | 1

0 1 3 5 6

Ao (rad.)
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The p, spectrum

« PYTHIA spectra with sliding angle
- PYTHIAs model UE: CR & MPI
- Good fits with the parametrizations

(GeV/c)?

102

A¢ intervals

- Low p, is constant (T) F107E oMB
Leading particle 108 0 -20 (with leading particle)

gp Cﬁ 9 00" - 20" (without leading particle)

10 B 520°-40°  100°-120°

- zfl=1(] = ©40°-60° ¢ 120° - 140°

10 £ 60°-80° ¢ 140°-160°

~80°-100°2:160° - 180°

- High p; varies (q)

- NS/AS are similar

- Need to consider w/o

leading particle

Ratio to MB

i
102 £ PYTHIA8240 (Monash Tune)
- Sliding A¢ Bins

103

10

_IIII| T III|T|'|
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 PYTHIA spectra with sliding angle o :
PYTHIAs model UE: CR & MPI 3 ol
Good fits with the parametrizations i

The p, spectrum

Low p. is constant (T)
High p, varies (q)
NS/AS are similar

Need to consider w/o
leading particle

A¢ intervals

o MB
» 0° - 20° (with leading particle)

0 0°- 20°(without leading particle)
%20° -40° ~ 100° - 120°

o 40°-60° ¢ 120° - 140°

0 60°-80° ¢ 140° - 160°

£ 80°-100"160° -
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How to quantify & compare these?

Precise spectra description

71074
3
- from low- to high-p, € 104
>
—_ a1 ke
_ 1 g—1 & 10!+
f(mr)=A- |1+ 1 (mp — m) <
TS NE 10—2_
T
&
- in multiplicity classes (pp, pA, AA) § 107
~
1 25
dNep — 9 AT [(2—q)m2+2mT3+2T32] « [1 q—1 ] q—1
dy |,—o s (2—9)(3—29) T m Lol Y5=TTeV.li<05, pp K *(0.493)
X ;
o]
- With PID: fis
11}
7T:|:7Kj:7Kg7K*O7p<ﬁ)7®7A‘7E:|:7Z:|:7EO7Q 810-_
- Wide range: 05
02 03 05 1 2 3 5 10 20
CM energy (GeV) 7000, 13000 5020 130-5020 pr (GeV/c)
Multiplicity range 2.2-25.7 4.3-45 13.4-2047
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How to quantify & compare these?

QCD-inherited scaling properties
1 71

flmp)=A- |1+ qTS(mT —m)

- Parameter scaling with vs & multiplicity
A(\/SNNa (Nen/m),m) = Ao+ ArIn —V“jjl“’ + A (N, /1)

T(\/snn, (Nen/n),m) =To+ Ty In VST;VN + Ty Inln (Ney /1),

A(v/SNNs (Nen/m) ,m) = qo + g1 In Y22 + go InIn (Nep /),

- Details:
G. Bir6 et al: J.Phys.G 47 (2020) 10, 105002
A. Ortiz: Phys.Rev.D 104 (2021) 076019

G.G. Barnafoldi:

104 |

107 4
10{) 4
10~
1072 4

103 4

*
103 4 -
5]
10 & S

N 7 (0.140)
Emm K* (0.493)
3 K? (0.498)

2
B K° (0.892
P(3) (0.938)

& pp, ¥'5 — 7000 Gew
+ PP, VS = 13000 GeV

104
{INch/d)
1.25
= . 7* (0.140)
mmm K* (0.493)
1 K2 (0.498)
K™ (i 2)
1.20 P 1 p(P) (0.938)
@ (1.020
1 A°(1.115)
> ] = = (1.321)
] mmm = (1.385)
. =° (1.531)
1.15 = 0 (1.672)
- PHENIX
9 AUAU, VSuw = 130 GeV
R *gRAHMS e
1.10 A Ausu = 200 GeV
STAR
A , 3 CucCu = 200 Gev
* & AuAu — 200 Gev
ALICE
@ PbPb. 2760 Gev
1.05 L ] M pPb. 5020 GeV
* PbPb, VSyy = 5020 GeV
& pp. Vs = 7000 GeV
X # o4 pp. VS = 13000 GeV
1.00 z

10> 102
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How to quantify & compare these?

« QCD-inherited scaling properties

g—1

f(mp)=A- ll—i—

- Parameter scaling with

A(VSNN, (Nen/m) ,m) = Ag + Ay In Y555 4 As (New /)

e = m)

0.6

g—1

0.5

Vs & multiplicity

T(\/snn, (New/n),m) =Ty + T1 In

.38Q

m

VENN Ty I In <Nch/77>d

Q(\/SNNa <Nch/77> ,m) =q +q1n

LT (GeV)

VNN g2 Inln (Ngp, /1),

m

« Thermodynamical consistency

3

3 p—
s =g [l [ Zrtriv g €

eqg =0.144 £ 0.010 GeV
ag = 1.156 £ 0.007

m* (0.140)
K* (0.493)

AY (1.115)
=* (1.321)
* (1.385)
=9 (1.531)
Q* (1.672)

JamaCoonam

E=]

PHENIX

€ AuAu, Sy = 130 GeVY
BRAHMS

A AuAU, Sy = 200 GeV
STAR

® CuCu, syy = 200 GeV
& AuAu, sun = 200 GeV

@ PbPh, VSyy = 2760 GeV
B pPb, Vsuy = 5020 GeV
* PbPb, /Syy = 5020 GeV
® pp, Vs = 7000 GeV

& pp, v's = 13000 GeV

3
eV [ &5 19,

.05

3
=g [ 55ES
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PYTHIA spectra with

Tsallis fit parameters

sliding angle R R S M ONE
30 - (a) 3
PYTHIAs model UE: CR & MPI =t N E
Good fits with the oF E
parametrizations (red line) of E
NS - highest T Eoalesx VP 4 vlvaiiag oy
NS/AS - highest q o e
TS - constantq, T T R
Multiplicity ~ A ?\,M%\ﬂj_
i m A & “EJ¥ v v DA g ]
105 with leading particle Monash Tune (open symbolsn)_:

i : ﬂNﬂ%ng;h n —_ :I?nﬁ:llum Bias
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Ao (rad.)

T, (Gev)

Multiplicity
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1 L L L T L
r NS TS AS NS ]
E_' (d) _E
) =
2N o oo o
= N3 T R e 4 E
:_ — Recalculated multiplicity _;
- | | (J.Phys.G 47 (I2020)1osoloz 3
0 1 2 3 4 5 6

A¢ (rad.)
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On the Tsallis-thermometer

Sliding angle

[

Need UE in PYTHIA -» CR & MPI
NS (with leading) is fully different
highest T & highest g

Beyond NS T is getting constant
— Wider range of UE, than in CDF

Leading particle

T, (GeV)

[=] o

S N © o

[+ [4]) w (4
- SRS

R

o
-1
(42}

Case |

— No CR
e Monash Tune

Case |l
— No CR
@ Monash Tune

T

T

T

First A¢ bin with P,

T | T
leading

with leading particle

¥ Monash Tune
m No CR

[l

T

[EE TS

I et
x

T

000 i o e s R

1.05
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On the Tsallis-thermometer

Sliding angle

T T

;0.351...[,,,,[_
- Need UE in PYTHIA » CR & MPI & E Tt b g

- NS (with leading) is fully different T e N

highest T & highest g

- Beyond NS T is getting constant Rl A

O
1 0
ﬁﬁﬁﬂf“'ﬁ?

— Wider range of UE, than in CDF

Leading particle

— No CR
e Monash Tune

Case Il with leading particle
— No CR % Monash Tune
@ Monash Tune m MNo CR

e

............

111

1.05 1.1
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On the Tsallis-thermometer

* Sliding angle
- Need UE in PYTHIA -» CR & MPI
= NS (with leading) is fully different S e e
highest T & highest q -

0.35 T T T T I T T T T [ T T A A T T T ]
E First A¢ bin with p. " % N -

T, (GeV)

o SR
Iz . - x . staratataletetetetetuletetet Nt
i et tu e et e ey
o L e L R B B R B T TR R B R o R A O A M T b
. . 0 D e uteseletelaletelel
- il R e M e O ‘:0000‘000000
I ateletetelely!
e . , ’ Webyasere eietels:
"""" S S5 il

S, e
()

- Wider range of UE, than in CDF  oas =i pr@teen o B O

e G
----- RN
eieielelele
Leading particle

K>

— No CR
e Monash Tune

Case Il with leading particle

— No CR % Monash Tune
@ Monash Tune m MNo CR
| [ | 1 | | L | [ | 1 [ L

1.05 1.1
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Cross-check with event shape variable
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How to quantify & compare events?

Transverse spherocity:

2 2
S T [Zilﬁ"jxnl]
|:| p—
4 Zi'. JUT;
Thrust:
T . = ij|ﬁT:i ) ﬁm|
miimn —
Zf PT.i
T - 0.024
T - 0169
- NO need for jet finding F - 0.048

-» Momentum & geometry infos

G. Bencédi et al: Phys.Rev.D 104 (2021) 076019
G.G. Barnafoldi: ICN UNAM Seminar 2023
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Event shape variable: spherocity

Simple 2-component model
- Isotrope: flat low p. distribution

- Jet: flat high p, distribution

Jetty (Sy— 0)
[sotropic (So— 1)

> X

260000 ————— n
= - =
[=] 4 o =]
o C/ /| ]
50000 — | —
- , 1
40000 (>~ s -
30000 [— o )
C ¢ intervals ¢ with p,asa weight 7
20000 — —Uniform 40° - 140° .
C  —80°-100° —30°- 150° ]
C —70°-110° —20° - 160° ]
10000 —  _gp°_120° —10°-170° -
= 50°-130° — 0° - 180° ]
ol P IR BT I B | J
0 1 2 3 4 5

E=g
-~ r
-
N O —
o
-
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Event shape variable: spherocity

Simple 2-component model

- Isotrope: flat low p. distribution

- Jet: flat high p. distribution b

260000 -
3 L
8 T
50000 — | [ |
Cl [ [
40000 >~/ /
30000 [
20000 [

10000 |-

O_IJJ]LIIIIJILKIII

Jetty (Sy— 0)
[sotropic (So— 1)
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Event shape variable: spherocity

Simple 2-component model

- Isotrope: flat low p. distribution

- Jet: flat high p, distribution

count

50000

40000

30000

20000

10000

0

60000

Jllll\l

—80°-

|
o N
S o

[ a
L €

¢ intervals

—Uniform 40° - 140°

100° —30°- 150°

°-110° —20° - 160°
°-120° —10°- 170°
°-130° — 0°-180°
[

Spherosity definition

>

Jetty (So— 0) :
[sotropic (Sp— 1) =

¢ with p,asa weight

0

1 2

¢ (rad.)

v

- Event selection based on spherocity classes is

G.G. Barnafoldi: ICN UNAM Seminar 2023

w2 (% P x A\’
1 Zfz} PT;

N
(3]
II|I||II|I|I|II|IIII|II|I|I|I||

available in ALICE
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Event shape variable: spherocity

Simple 2-component model

- Isotrope: flat low p. distribution

- Jet: flat high p, distribution

count

50000

40000

30000

20000

10000

0

60000

Spherosity definition

> <
&
|

m

Z?; |ﬁTrs, A ﬁ,|

4

(

Zfz} PT;

'

0

=" Jetty (Sq Ot E
- W = Isotropic (Sg— 1) = 3°F E
_érwj ‘ o ‘b v G 2.52— —;
- = >7 2 =
- ¢ intervals ¢ with p,asa weight = =
T —uniform  40°- 140° ] 1.5 ;— . —
C —80°-100° —30° - 150° c
T —70°-110° —20°- 160° 1= y“s
[ —60°-120° —10°-170° ] 608 :/
= 50° - 130° — 0° - 180° v
FERNRN O T N T CH | M CO O | | 1 [ I - P L 1M | L |
1 2 4 5 6 0 1 2 3 5 6
¢ (rad.) o (rad.)
- Event selection based on spherocity classes is available in ALICE
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Spherocity vs. Tsallis termometer

 Spherocity relative to the MB defines wider UE

{.eading particle

= 0-65 I T T T T T T T | I I T I I T T T I T T I T T I
n | | I | [ J

=
w

TS AS TS NS

Jetty (So— 0)

0.6 Isotropic (So— 1)
/3 3
Transverse Side Transverse Side
w3 <1Ag | < 27/3 /3 < IA¢0I < 2n/3 _
§y(MB) [=------
0.55

Away Side
|A¢0| > 21/3

0.5 I 1 Ll
0

—- CDF-based UE [40,140]

G.G. Barnafoldi: ICN UNAM Seminar 2023



Spherocity vs. Tsallis termometer

 Spherocity relative to the MB defines wider UE

Leading particle

_00.65 T T 1

0.6

§,(MB)
0.55

1
0.5 I .|

NS

TS

T | I I T T
AS

letty (S;— 0)
Isotropic (So— 1)

0

- Wider range of UE [40,140], than in CDF [60,120]
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Spherocity vs. Tsallis termometer

Spherocity relative to the MB defines wider UE

« Tsallis-thermometer presents the same

T, (GeV)

0.35

_o 0.65

1IIII1[1I|'Ir.1_s<_:x_l)e_/_y__L_é_v_v_\(_:_l1t_ LI I | L O N L (N B B B LI N S B I
: L leading el 1 In |
First Ao b ith fots AKRER, -
E e e RS - NS TS AS TS NS
B S - : -
0255 el = - Jetty (So— 0) .
= e 0.6 - /‘\ Isotropic (Sy—> 1) /‘\_\ -
0.2 B R = i ]
e R §aEe : :
0.15 s et S "““‘.‘?‘.—""ﬁ.— 2 sm8)
040 Casel RIS, 5 0.55
" —NoCR IR, -
N e Monash Tune X?’ﬁ“ﬁ(}ka\\b B
C . . ) Fatotatetetosetatatoralotels .
0.05 — Case Il with leading particle st tereetat el 23]
- —NocCR % Monash Tune L R A =
— e Monash Tune = No CR jeanassneinaces’ L0t m
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Spherocity vs. Tsallis termometer

 Spherocity relative to the MB defines wider UE

« Tsallis-thermometer presents the same
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- Wider range of UE [40,140], than in CDF [60,120]
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Parameters in spherocity classes

* PYTHIA spectra with <

sliding angle in S, classes d3
- The more jetty the event, the :i'%“@g '
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Dependence on c.m. energy
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Multiplicity scaling from RHIC to LHC

PYTHIA spectra with sliding

angle from RHIC to LHC
— Multiplicity goes with the

logarithm of the c.m. energy
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Multiplicity scaling from RHIC to LHC

PYTHIA spectra with sliding

angle from RHIC to LHC
— Multiplicity goes with the
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Tsallis-thermometer from RHIC to LHC

PYTHIA spectra with sliding
angle from RHIC to LHC
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Tsallis-thermometer from RHIC to LHC

PYTHIA spectra with sliding
angle from RHIC to LHC
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Tsallis-thermometer from RHIC to LHC

PYTHIA spectra with sliding
angle from RHIC to LHC
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Tsallis-thermometer from RHIC to LHC
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Tsallis-thermometer from RHIC to LHC
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Tsallis-thermometer from RHIC to BB

PYTHIA spectra with sliding
angle from RHIC to LHC

0-2 I I I | I I I

T, (GeV)

—0°-20°
| —20° - 40°
- —40° - 60°

0.18 [ —60°-80°

Multiplicity goes with the " 100 -

- —120° -

logarithm of the c.m. energy 0.16] 160

--180°
--200°
--220°

240°

T

Leading particle line is the outlier

260°
.. 280°
--300°
--320°
--340°

The structure of the curve is stable 0.14

0.12

[ [ I l T T T T T T T

—7

—80° -100°

120°
140°
160°
180°

-200°
- 220°
- 240°
- 260°
- 280°
-300°
-320°
-340° =
-360° ™

— 200 GeV
—— 900 GeV

TeV

— 13 TeV

0.1||\|||

1 1.02

I I I Il I I I I I I I I ! I

| 1 | ‘ I | 1 | { | 1 1 | 1 |

1.06 1.08 1.1 112 114

- Nice c.m. energy scaling trends even further?

G.G. Barnafoldi: ICN UNAM Seminar 2023

q

65



Tsallis-thermometer from RHIC to BB

PYTHIA spectra with sliding s 02

angle from RHIC to LHC E’

- Multiplicity goes with the P
logarithm of the c.m. energy 0.16

Leading particle line is the outlier
The structure of the curve is stable o0.14

- Nice c.m. energy scaling trends even further?
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Conclusions

« Could we understand UE?
- Not yet, but getting closer by quantifying them
- Model UE: PYTHIA (CR, MPI), HIJING (minijet)
— UE properties has been charaterized
— Tsallis-Pareto fits well in narrow slices

 To take away...
- Tsallis-thermometer present wider UE
In degrees CDF: [60,120] - [40,140]
- Event shape classification support the model
- Scales with c.m. energy well

- UE has been quantified, next step...

Measure & investigate in pA or AA?
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A) PbPb collision

So, again....

Which one

is the “closest” to the early Universe?

C) Cup of coffee B) pp collision

ui A
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Muchas Gracias!
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Tsallis-thermometer from RHIC to LHC

PYTHIA spectra with sliding
angle from RHIC to LHC

Multiplicity goes with the
logarithm of the c.m. energy
Leading particle line is the outlier
The structure of the curve is stable
Spherocity is increasing, but the
size of the effect is the same

- Nice c.m. energy scaling trends, in spherocity as well
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derivatives with sliding

Derivatives of the parameters

PYTHIA spectra parameter

angle

- PYTHIAs model UE: CR & MPI
TS (+AS) » constant T & ¢

0T dq
o(Ap) o(Ad)

#0

NS — highest T
NS/AS - highest g
Multiplicity ~ A

B LUt o | B B U B AL O HMLLE B LA m
z N
%’ NS TS AS TS NS
60 — ]
a0 S |
20__ A\j_
OSE\G-MMM@—Z-—
(for NS & AS) PP D] R B el
0 1 2 3 4 5 6
¢ (rad.)
E LA IR | I BN T T ]
g 0418 Ns TS AS TS NS [T
0.2 h—/—_
[ o o O~ 16g olo2 _ _| ]
02k —
04l —
N P P B B BRI B EPE B
0 1 2 3 4 6
Ap (rad.)

G.G. Barnafoldi: ICN UNAM Seminar 2023

[5T/8(a0)]

|5N,,/8(a0)]

e o
n o

72




Spherocity model with multiplicity
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Thermodynamical consistency?

Th d ical ist fulfilled t high d
ermodynamical consistency: fulfilled up to a high degree ‘
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