

Simulation and testing of a MID prototype for ALICE 3

Antonio Paz for the ALICE Collaboration

5 nov 2024

SILAFAE 2024, México

ALICE overview

• ALICE The heavy ion collision experiment at CERN

See, Antonio Ortiz plenary talk: 4 nov 2024

5 nov 2024

ALICE 3 overview

 From 2035 onwards (runs 5 and 6) Physics goal: Understand mechanisms affecting heavy-ion collisions: from early-stage medium formation to heavy-flavour diffusion, thermalization and hadronization in QGP See, Jesus Muñoz talk: 4 nov 2024

MID overview

- Muon tagging: matching MID tracklets with tracks (tracker)
- Reconstruct J/ψ down to $p_T = 0$ (|y| < 1.24) in the dimuon decay channel
 - Muons down to

• ALICE has unique capabilities in LHC Runs 5 and 6 (ATLAS and CMS: $J/\psi > 6.5 \text{ GeV/c}$

5 nov 2024

MID participating institutions

- Benemérita Universidad Autónoma de Puebla
- Universidad Autónoma de Sinaloa
- Universidad Nacional Autónoma de México
- Centro de Investigación y de Estudios Avanzados
- Czech Technical University in Prague
- Chicago State University
- HUN-REN Wigner Research Centre for Physics

Baseline option of MID

- Absorber (iron, variable thickness, 70 cm thick $\eta=0$):
 - ~10⁻² hadron rejection factor
 - (Low) charged particle fluence: \approx 4 Hz/cm²
 - Scattering: ≈4-5 cm for p=1.5 GeV/c (granularity 5x5 cm² enough for 1.5-5 GeV/c)

Instituto de

Ciencias Nucleares UNAM

Baseline option of MID

- Absorber (iron, variable thickness, 70 cm thick $\eta=0$):
 - ~10⁻² hadron rejection factor
 - (Low) charged particle fluence: \approx 4 Hz/cm²
 - Scattering: ≈4-5 cm for p=1.5 GeV/c (granularity 5x5 cm² enough for 1.5-5 GeV/c)
- Plastic scintillator bars with WLSF and SiPM:
 - Low cost
 - Time resolution in order of ns
 - Good performance under the expected radiation environment
 - No gas mixture, no high voltage needed

Instituto de

Ciencias Nucleares UNAM

1 cm

Prototype design

Prototype

 Fermi bars selected (based on Test beam 2023 results)

5 nov 2024

Antonio Paz - SILAFAE 2024 (México)

Prototype

- Fermi bars selected (based on Test beam 2023 results)
- Small chamber 20x20 cm² (10 bars)
 - Two layers configuration (10cm separation)
 - Signal and power through same cable

Journal of Instrumentation, Volume 19, April 2024, DOI 10.1088/1748-0221/19/04/T04006

Perspectiva 1

Perspectiva 2

5 nov 2024

Antonio Paz - SILAFAE 2024 (México)

Prototype

- Fermi bars selected (based on Test beam 2023 results)
- Small chamber 20x20 cm² (10 bars)
 - Configuration keeps 3% hadron rejection factor

Journal of Instrumentation, Volume 19, April 2024, DOI 10.1088/1748-0221/19/04/T04006

Absorber thickness can be increased up to 80 cm (different absorber thicknesses to be tested)

Simulations: reconstruction possible

Acceptance of prototype

- Determine fractions of μ , π using a multitemplate fit that matches the position distribution (samples with different compositions of muons and pions were tested)
- Reconstructed efficiency consistent with expectation (<25% for >1GeV/c)

MC studies done by Paola Vargas and Antonio Ortiz

Prototype construction and first results using atmospheric muons

Chamber assembling

- Fiber-scintillator optical connection using optical grease
- 3D printed mechanics
- SiPM's PCB is exchangeable

Mechanical design by Enrique Patiño, 2024aug

Setup and materials

- Fermilab bars
- Fiber 1.5mm Kurarai
- Optical grease (bluesil Paste 7)
- SiPM Hamamatsu SiPM-13360-6050CS SiPM-13360-3050CS

Readout DT5202

- 64 ports
- Voltage can be independently supplied to each ports
- Citiroc chip: for high radiation environments
- Connection through usb or ethernet

Layer by layer testing

Reassembly at CERN

Instituto de Ciencias

Nucleares UNAM

Antonio Paz - SILAFAE 2024 (México)

Scintillator-SiPM calibration (CR)

Test beam 2024 (October 9-16) Muon- and pion-enriched beam performance plots

Setup

Charge on bars

(each channel calibration ongoing)

Observed behavior

- Pion and muon-enriched beams were used (p = 2, 3, 6 GeV/c)
- Expected behavior observed:
 - Muons: measurable scattering
 - Pions: strong suppression, increasing with absorber thickness
- Data analysis ongoing

Detector performance

Position distribution of hits in the second layer of the camber (pion enriched beam)

Instituto de

Ciencias Nucleares UNAM

Slightly wider spot probably because of secondary particles

From a scan we found that the chamber was not well aligned, the beam hits the detector at round x~0 cm, y~2 cm

Wider spot (scattering)

Summary

- Prototype of baseline MID built for Test Beam 2024
- Assembled and tested with atmospheric muons at CERN, to ensure SiPM-bars calibration
- Performed tests at CERN T10 using muon- and pion-enriched beams at p = 2, 3, 6 GeV/c and with several absorber lengths (60-90cm)
- First results of data analysis show expected behavior for muons an pions

Expected hadron rejection (MC)

 Absorber thickness can be increased up to 80 (iron blocks will be used to test different absorber thicknesses)

negligible

Construction process \rightarrow previous work

• Some examples

- Cleaning process
- Fiber cutting and polishing
- Fiber contact with SiPM
- Cable contacts

Beam distribution

Horizontal angle [rad]

Distributions measured using MWPC

Physics performance - MC simulation

Significance is above 10

 1000 for rejection factor 4%

