FROM VACUUM
AMPLITUDES TO PHYSICAL
OBSERVABLES IN THE

CAUSAL LOOP-TREE o
DUALITY

Roger |. Hernandez Pinto
Universidad Autdnoma de Sinaloa - Mexico

On behalf of the LTD Collaboration

XV Latin American Symposium on High Energy Physics

November 5th 2024, Mexico City, Mexico e
CONFIE

CIENCIA PARA EL PROGRESO



INTRODUCTION

The description of the fundamental interactions rely on unitary
and local quantum field theories.

Multi-loop scattering amplitudes describe the quantum fluctuations
at high-energy scattering processes are the main bottleneck.

Accurate theoretical predictions in High Energy Physics require to
deal with multi-loop and multi-leg scattering amplitudes.

he precision phenomenology requires to re-think the way of

doing the calculations. (‘\
®



HANDLING INFINITIES

» The standard definition for observables rely on QFTs.

* The basic algorithm are the Feynman rules which provides the theoretical
predictions of nature though complicated expressions.

» First, build the scattering amplitude | A4 ), and then
o~ [dPS | A |7

» However, the validity of QFT Is extrapolated to infinity energy. when loops are
computed, and also to zero energy when parallel particles mimic the behavior

to a single particle emitted.
oo




WHY D-DIMENSIONS ?

« Why divergences If the cross section is always finite !

» Real and virtual amplitudes are not defined in the same Integration domain.

LO

* |s there any way to mix both real and virtual contributions at integral level !

» FDU takes the Loop-Tree Duality (LTD) theorem to merge both contributions at once.
XX



e LID PATS

The Four Dimensional Unsubtracion (FDU) formalism is an attempt to formulate QFT in four
dimensions.
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BENERALITIES OF FHE B

» Massive one-loop scalar integrals are,

D1

» where the +10 prescription establishes that particles are

ooing forward In time.
Catani et al, JHEP 09 (2008) 065, Rodrigo et al, Nucl. Phys. Proc. Suppl. 183:262-267 (2008) I




» LTD at one loop establishes then

£y j=1
JFi
» where Feynman propagators are transformed to dual propagators.

1
Gplqi;q5) = .
gt om0 (S

S(C]z) = 27T’59(Qi,0)5(%2 7 mf) and sets internal lines on-shell and

In the positive energy mode.

» LTD modity the +10 prescription, instead of having multiple cuts like
[ERREse riman lree ['heorem.

. 0" is a future-like vector, for simplicity we take ¥ = (1, 0). In fact,

the only relevance is the sign In the prescription.
(o



NUMERICAL IMPLEMENTATION

* Faster computations are needed for the Montecarlo simulations for the LHC
observables.
* Using LTD the standard methods become time consuming

Rank Tensor Pentagon Real Part Imaginary Part Time [s]
P16 2  LoopTools —1.86472 x 1078
SecDec —1.86471(2) x 10°® 45
LTD —1.86462(26) x 1078 1
P17 3  LoopTools 1.74828 x 1073
SecDec 1.74828(17) x 103 550
LTD 1.74808(283) x 10~3 1
P18 2  LoopTools —1.68298 x 107° +4 1.98303 x 107°
SecDec —1.68307(56) x 107® 44 1.98279(90) x 10°® 66
LTD —1.68298(74) x 107® 44 1.98299(74) x 10°° 36
P19 3  LoopTools —8.34718 x 1072 +4 1.10217 x 1072
SecDec —8.33284(829) x 1072 44 1.10232(107) x 10~2 1501
LTD —8.34829(757) x 1072 44 1.10119(757) x 1072 38 / N
S. Buchta, et al., Eur. Phys. . C 77,274 (2017) ( —



IR SINGULARITIES

The scalar one-loop three-point function contains a single pole, the IR.

The first analysis towards the understanding of the LTD was done In

this simple diagram.

The application of the LTD, diagrammatically means that,

[t means that the full integrals is the sum over three phase—spac“ :

integrals,

1

3

LM (p1,p2, —ps) = — ZI@'

Q=i

H.-Pet al, JHEP 02(2016) 044




IR REGULARISATION

* By KLN, the cancellation must be done through the addition of

the real contribution. [ he matching condrtion is a key point in the

cancellation of IR singularities, by sesmenting the phase space as,
iR = 0g 12Re/d<I>H (MM, — )

Gy =5 2Re [ d®1oa(MOIMP)(Y;, i)
* where the virtual and real matrix elements are given by,
<./\/l(0)]/\/l(-1)> = —g*s121; . e

e W

(MM = gs15/(5),55,)

EEoentum conservation, P1 + P2 = Py + ps +p. (_\
000

H.-P et al., |HEP 02 (ZCE60SSE



UV SINGULARITIES

» The scalar bubble diagram contains only UV divergences.
« UV renormalisation requires local cancellation of divergences.

* In general, counterterms are obtained by expanding the propagator around a
UV propagator
1
Gr(q) = T quv = £+ kyy
Y Gy — Koy 0

* For the bubble integral, the counterterm is
Icnt _/ 5(QUV)
1 +
- / ; TD ¢ 2(g57%0)?
¢ oy

VA \/qUV + Uy — Z((_\
I
H-P et al, JHEP 02(2016) 044 | m—




ERO55 SEC TION NS

» As in Dimensional methods, we study y* — gg @ NLO in QCD

D1 D1 D1 P P
93 o A q3
@ 5 ! ? & J,
G2 R q2
P2 D2 D2 D5 P
| . Each piece has been
Using the FDU formalism, we find, computed in 4D

5\ = O 0 (19 — 3210g(2)),

4 ' ' '
(1) oj; 11 7 The sum coincides with
B (‘ g Bloeld 3) » the result with
7.‘.2

Dimensional methods
i

21
5 = U(O)Z—;CF (—7 + 2410g(2) +

Sborlini et al,, JHEP 08 (2016) 160 | E—
I



AMPLITUDES



AMPLITUDES IN QFT

Amplitudes contains the information of the theory that Is

tested In Particle Physics Phenomenology.

In general, it Is
denominator.

a rational function which has issues always in the

e numerator can' Be nanaie

complexity of the denominator.

to reduce the

The maximal complexity Is, then, when the numerator Is unity.

Since amplitud

functions has been a bottleneck in phenomeno

es will be Integrated, the compu

fation of analytic

Ogy o000



MULTI-LOOP DIAGRAMS

* We were Interested in the application of the LTD to some topologies.

* [he most simplest arrangements are, up to three—loops

Maxmal Loop Next-to- Maxmal Loop Next- to Next Maximal

Topology Topology Loop Topology
MLT NMLT NNMLT /...
Aguilera-Verdugo et al., Phys. Rev. Lett. 124 (2020) 2| =




DUAL REPRESENTATIONS

* It I1s possible to find, dual representations for each topology. For instance,




D FORESE

12

BoQ

N

L+1

» At four loops, we find that
four main topologies appear.
They can be casted in terms
of the well know s, t and u
kinematical variables.

s Nevertheless, the number
of trees depends on the
number of loops.

12
234 0
+
123

S 5(3L-7)
t 5(8L-7)
U 9(5L-1 1)

Ramirez-Uribe et al,, JHEP 04 (2021) 129



CAUSAL REPRESENTATIONS

« Denominators are important in the representations since the complexity of the

integrals are explicitly there.

» Combinatorics in the dual representations shows that there are denominators

that could present a non-physical singularity, such as,

« However, causal representation do not have such non-physical divergences. The

most general expression Is given by,
oo

Z+q(+)—>0
I

Aguilera-Verdugo et al., JHEP O (2021) 069 I
I



CAUSAL REPRESENTATIONS

* [he most simple causal diagram is in the MLT topology.The MLI contains
two different propagators,

Z C]i(,g) T Pio
o

* which can be interpreted diagrammatically.



EAUSAL NMER

* For instance, the N3MLT requires |3 causal propagators to describe the full amplitude.

o L2\ A AP
i;

» Poles are fixed in physical singularities, are they easy to integrate numerically ¢ 006

Ramirez-Uribe et al., |HERP 04 (2C285 R e —
I



BUALYVS CAUSHE

» Dual representations have still threshold singularities; however, Causal

representation has only physical divergences.

1 = 0.000025

— 0.000020

0.000015

0.000010

5 x107°6

* Smooth integrands in the Causal representation.

Ramirez-Uribe et al., |HIER O (202 Bisiei

1.0620058x10°°



LTD CAUSAL UNITARY



FROM VACUUM TO
OBSERVABLES

» All observables are computed from squared amplitudes and summing
over final states and, in general, summing over Initial polarization states.

» Therefore, in general for a decay process at NLO, 1 — 23,

FNLO =R

gl — [JV counterterms
{ ’
$"" Ramirez-Uribe et al, e-Print: 2404.05492 (0_0\



+ Therefore, the differential contribution for a process at k'—order
in the perturbation theory in the LTD causal unitary has the form,

d\ z R i
dl‘*g{) e el TR dg\,R)(ll.”lna)Ailmikc_l
Y
US>

» where 2 denotes the set of all phase-space configurations, then

k
NELOFES '
B = 3l
j=
k : :
+ where dI'Y LO denotes the differential decay rate up to (next-to)*
-leading order; and the Integration measure Is given by,

Al el 3 ddd_l?
DA = a® =1l

. With {fj}jzl,---,/\ the loop momenta.



* [he renormalized vacuum amplitud is given by,
Ay ia) = AUV ia) — AV i,a)
» with the causal amplitude Is defined as,

ﬂg\)(ir"ina) = Res (?ﬂ(/\) A )

D °i,a

* where the A—structures are in general

zl la_z 6P (+)

- with the on-shell energies defned as

. and x,, —2q(+) o
o000




The complete definition of the decay rate requires de definition of the
phase-space as a function of,

~/

K .iz=278(h i )

ll P ln
Wwith

e Bl (+)
Z % ;.0 a 0

Finally, it 1s important to mention that the causal propagators shall

appears as,
— |

2 q(+)

[t I1s iImportant to mention that in general the numerator shall be a

function of on-shell energies and internal masses.
®
I

ll l



f— gq INTHE
LTD CAUSAL UNITARY

» Let us consider the standard process, f — gg at NLO in QCD with
f e {y*, H}. The vacuum amplitudes in the LTD causal unitary are,

» where the momenta labelling are,
Q=01+ =0+0q3 =10,

qy=10,,95=0r— 03,45 =3

o
Ramirez-Uribe et al, e-Print: 2404.05492 A



» Applying the procedure described before, we define de LO decay

rate as,
. d(I>72 2 .
e = o A (456)A 55
)
« where,
( >
260 | |42, |
A®D(456) = — e
X456 A456
\
e and

5456=%5<|72|—ﬁ\[> |

S
2

« with f = \/1 — 4m?/s and the standard results,

D
Wi |2=2s<1 :1 ﬂ), 7

e=qq ) H—qq




» The NLO decay rate i1s now,

AT Pz,

f=qq 5 2\/;

» where the renormalized amplitude Is given in 4 dimensions

<<<Q7S’f’R)(456)A455 + o )(1356)51355) +5 o240 3))

S,

(3.1.K) - (3.1) (3.1)
A3 4s56) = (A 3(456) - A3(456))

« with the subtraction counterterms,

28

X45
» and the renormalization constants in the LT D causal unitary.

Gl (456) —

; (AZ;IUW 14O P = AZUVI8mA(1 + f2) + Ang))

f—qq



* Finally, we compare
our analytical results
with numerical
evaluations.

* We find perfect
agreement with
DREG for both Higgs
and virtual photon
decay.

* We present also the
numerical evaluation
for the heavy scalar

decay Into light scalars.
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O — pp AT NNLO

e [ he vacuum amplitu

d contributing to t

Drocess IS given by t

|||6

TS
eV

NIs particular

ne four loop amplr

‘ude,

* where the extra four-momenta given by,

g7 =104

A0S G = Zgi50 7

Ramirez-Uribe et al, e-Print: 2404.05492
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: 10 E LTb causal unitary
* [he unintegrated S
5 AxPe3e) S
EEEICE remains & 5 LT T
ﬂni“e iﬂ -l-_he LTD i%t o threshold:y(g’””>(4e§6)+52(§””)(236) "
. Al T
causal unrtary. Cs o). e :
Ao (456) [ ASH(236)
10}
0.40 045: | ‘GO 0.60
V



* |he unintegrated
amplitude remains

finite In the LTD
causal unrtary.

In addition, local

cancellation of
collinear
singularrties are
present at NLO
and NNLO

(g:2/g: ) (B A

10/ LTD causal unitary
double collinear
5. b5t L AR (1356)
=)
5 0 fotal @ ks e N AT
TS
T
A5 (456)
_’|O L
o) =D —2.0 =10 -1.0
log 19V
75000 | LTD causal unitary
o triple collinear
50000  Ap (1856):""
25000 | )
fotal ;-
O e, it~
—25000 | X e
Al (35678) -
—50000 | o
x (4,0)
—~75000 - Ap' (456)
-3.0 —2.5 -2.0 -15 —1
log 19V



CONCLUSIONS

* New mathematical methods for computing higher order corrections are
needed for upcoming LHC and the FCC observables.

* The LTD has opened a new methodology to tackle only physical
divergences through causal representation of Feynman integrals.

* We find the first proof-of concept of the LTD causal unitary at NLO and

NNLO free of unphysical singularities in the processes H — qg,y* — qq
at NLO and @ — ¢¢ at NLO and NNLO.

* The results presented constitute a solid confirmation of the unique

capabilities and advantages of LI D causal unitary at higher perturbative "
orders. (,_,\
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