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INTRODUCTION
• The description of the fundamental interactions rely on unitary 

and local quantum field theories.

• Multi-loop scattering amplitudes describe the quantum fluctuations 
at high-energy scattering processes are the main bottleneck.

• Accurate theoretical predictions in High Energy Physics require to 
deal with multi-loop and multi-leg scattering amplitudes.

• The precision phenomenology requires to re-think the way of 
doing the calculations.
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HANDLING INFINITIES
• The standard definition for observables rely on QFTs.

• The basic algorithm are the Feynman rules which provides the theoretical 
predictions of nature though complicated expressions. 

• First, build the scattering amplitude , and then

• However, the validity of QFT is extrapolated to infinity energy, when loops are 
computed, and also to zero energy when parallel particles mimic the behavior 
to a single particle emitted.

|ℳ⟩

σ ∼ ∫ dPS |ℳ |2
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WHY D-DIMENSIONS ?
• Why divergences if the cross section is always finite ?

• Real and virtual amplitudes are not defined in the same integration domain.

�LO =

�NLO =

• Is there any way to mix both real and virtual contributions at integral level ?

• FDU takes the Loop-Tree Duality (LTD) theorem to merge both contributions at once.

+
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THE LTD PATH
The Four Dimensional Unsubtracion (FDU) formalism is an attempt to formulate QFT in four 
dimensions.

• Loop-Tree Duality.  

• Applications of the LTD.

• FDU formalism.

• Singular structures.

• Two-loop numerical approach.

• Multiloop analytical results.

• Geometry and Causal representations.

• Automation & UV in the LTD.

• LTD Causal Unitary.
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GENERALITIES OF THE LTD
• Massive one-loop scalar integrals are,

• where the +i0 prescription establishes that particles are 
going forward in time. 

= �ı

Z
ddq

(2⇡)d

NY

i=1

1

q2i �m2
i + ı0
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• LTD at one loop establishes then

• where Feynman propagators are transformed to dual propagators.

•                                                and sets internal lines on-shell and 
in the positive energy mode.

• LTD modify the +i0 prescription, instead of having multiple cuts like 
in the Feynman Tree Theorem.

•      is a future-like vector, for simplicity we take                   . In fact, 
the only relevance is the sign in the prescription.

L(1)(p1, · · · , pN ) = �
XZ

`1

�̃(qi)
NY

j=1
j 6=i

GD(qi; qj)

GD(qi; qj) =
1

q2j �m2
j � i0⌘ · (qj � qi)

�̃(qi) = 2⇡i✓(qi,0)�(q
2
i �m2

i )

⌘µ ⌘µ = (1,0)

6



• Faster computations are needed for the Montecarlo simulations for the LHC 
observables.

• Using LTD the standard methods become time consuming 

NUMERICAL IMPLEMENTATION

7   S. Buchta, et al. , Eur. Phys. J. C 77, 274 (2017)



IR SINGULARITIES
• The scalar one-loop three-point function contains a single pole, the IR.

• The first analysis towards the understanding of the LTD was done in 
this simple diagram.

• The application of the LTD, diagrammatically means that,

• It means that the full integrals is the sum over three phase-space 
integrals,

L(1)(p1, p2,�p3) =�
3X

i=1

Ii

+ +=

8H.-P. et al., JHEP 02(2016) 044



• By KLN, the cancellation must be done through the addition of 
the real contribution. The matching condition is a key point in the 
cancellation of IR singularities, by segmenting the phase space as,

• where the virtual and real matrix elements are given by,

• By momentum conservation,

�̃i,R = ��1
0 2Re

Z
d�1!3hM(0)

2r |M
(0)
1r i✓(y0jr � y0ir)

�̃i,V = ��1
0 2Re

Z
d�1!2hM(0)|M(1)

i i✓(y0jr � y0ir)

y0ir =
s12
s0ir

hM(0)|M(1)
i i = �g4s12Ii

IR REGULARISATION

hM(0)
2r |M

(0)
1r i = g4s12/(s

0
1rs

0
2r)

p1 + p2 = p01 + p02 + p0r
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UV SINGULARITIES
• The scalar bubble diagram contains only UV divergences. 

• UV renormalisation requires local cancellation of divergences.

• In general, counterterms are obtained by expanding the propagator around a 
UV propagator

• For the bubble integral, the counterterm is

GF (qi) =
1

q2UV � µ2
UV + ı0

+ · · · , qUV = `+ kUV

IcntUV =

Z

`

1

(q2UV � µ2
UV + ı0)2

IcntUV =

Z

`

�̃(qUV )

2(q(+)
UV,0)

2

q(+)
UV,0 =

q
q2
UV + µ2

UV � ı0

LTD
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CROSS SECTION IN 4D
• As in Dimensional methods, we study  @ NLO in QCD

• Using the FDU formalism, we find,

γ* → qq̄

�̃(1)
1 = �(0)↵s

4⇡
CF (19� 32 log(2)) ,

�̃(1)
2 = �(0)↵s

4⇡
CF

✓
�11

2
+ 8 log(2)� ⇡2

3

◆
,

�̄(1)
V = �(0)↵s

4⇡
CF

✓
�21

2
+ 24 log(2) +

⇡2

3

◆
.

Each piece has been 
computed in 4D

The sum coincides with 
the result with 

Dimensional methods

11Sborlini et al., JHEP 08 (2016) 160



AMPLITUDES



• Amplitudes contains the information of the theory that is 
tested in Particle Physics Phenomenology.

• In general, it is a rational function which has issues always in the 
denominator. The numerator can be handle to reduce the 
complexity of the denominator.

• The maximal complexity is, then, when the numerator is unity.

• Since amplitudes will be integrated, the computation of analytic 
functions has been a bottleneck in phenomenology.

AMPLITUDES IN QFT
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• We were interested in the application of the LTD to some topologies.

• The most simplest arrangements are, up to three-loops,

MULTI-LOOP DIAGRAMS

Maximal Loop 
Topology

MLT

Next-to-Maximal Loop 
Topology
NMLT

Next-to-Next-Maximal 
Loop Topology

NNMLT
14Aguilera-Verdugo et al., Phys. Rev. Lett. 124 (2020) 21



• It is possible to find, dual representations for each topology. For instance,

DUAL REPRESENTATIONS

A(L)
MLT(1, · · · , n) =

Z

`1,··· ,`L

nX

i=1

AL
D(1, · · · , i� 1, i+ 1, · · · , n; i)

<latexit sha1_base64="u4EZcrYKjFS3vocADwl9F200S50="></latexit>
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• At four loops, we find that 
four main topologies appear.  
They can be casted in terms 
of the well know s, t and u 
kinematical variables.

• Nevertheless,  the number 
of trees depends on the 
number of loops.

LTD FOREST

s 15(3L-7)

t 5(8L-7)

u 9(5L-11)

16Ramírez-Uribe et al., JHEP 04 (2021) 129



• Denominators are important in the representations since the complexity of the 
integrals are explicitly there.

• Combinatorics in the dual representations shows that there are denominators 
that could present a non-physical singularity, such as,

• However, causal representation do not have such non-physical divergences. The 
most general expression is given by,

+q(+)
1,0 + ⋯ + q(+)

i−1,0 − q(+)
i,0 + q(+)

i+1,0 + ⋯ + q(+)
N,0

∑
i=1

± q(+)
i,0 → 0

CAUSAL REPRESENTATIONS

17Aguilera-Verdugo et al., JHEP 01 (2021) 069



CAUSAL REPRESENTATIONS

• The most simple causal diagram is in the MLT topology.The MLT contains 
two different propagators,

•  which can be interpreted diagrammatically.

∑
i=1

q(+)
i,0 ± p1,0
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CAUSAL NMLT

• For instance, the N3MLT requires 13 causal propagators to describe the full amplitude.

• Poles are fixed in physical singularities, are they easy to integrate numerically ?
19Ramírez-Uribe et al., JHEP 04 (2021) 129



DUAL VS CAUSAL

• Dual representations have still threshold singularities; however, Causal 
representation has only physical divergences.

• Smooth integrands in the Causal representation.
20Ramírez-Uribe et al., JHEP 04 (2021) 129



LTD CAUSAL UNITARY



FROM VACUUM TO 
OBSERVABLES

• All observables are computed from squared amplitudes and summing 
over final states and, in general, summing over initial polarization states.

• Therefore, in general for a decay process at NLO, ,1 → 23

ΓLO =

ΓNLO = − UV counterterms+
22Ramírez-Uribe et al, e-Print: 2404.05492



• Therefore, the differential contribution for a process at order 
in the perturbation theory in the LTD causal unitary has the form,

• where  denotes the set of all phase-space configurations, then

• where  denotes the differential decay rate up to (next-to)
-leading order, and the integration measure is given by, 

• with  the loop momenta.

kth−

Σ

dΓNkLO
a

k

{ℓj}j=1,⋯,Λ

dΓ(k)
a = dΛ

2ma ∑
(i1⋯ik)∈Σ

𝒜(Λ,R)
D (i1⋯ina)Δ̃i1⋯ikā

dΓNkLO
a =

k

∑
j=0

dΓ( j)
a

dΛ =
Λ−1

∏
j=1

dΦ ⃗ℓ j
=

Λ−1

∏
j=1

μ4−d dd−1 ⃗ℓ
(2π)d−1
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• The renormalized vacuum amplitud is given by,

• with the causal amplitude is defined as,

• where the structures are in general,

• with the on-shell energies defined as

• and .

λ−

xa = 2q(+)
a,0

𝒜(Λ,R)
D (i1⋯ina) = 𝒜(Λ)

D (i1⋯ina) − 𝒜(Λ)
UV(i1⋯ina)

𝒜(Λ)
D (i1⋯ina) = Res ( xa

2 𝒜(Λ)
D , λi1⋯ina)

λi1⋯ina =
n

∑
s=1

q(+)
is,0

+ q(+)
a,0

q(+)
a,0 = ⃗q2

a + m2
a − i0
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• The complete definition of the decay rate requires de definition of the 
phase-space as a function of,

• with

• Finally, it is important to mention that the causal propagators shall 
appears as,

• It is important to mention that in general the numerator shall be a 
function of on-shell energies and internal masses.

Δ̃i1⋯inā = 2πδ(λi1⋯inā)

λi1⋯inā =
n

∑
s=1

q(+)
is,0

− q(+)
a,0

1
λi1⋯im

= (
m

∑
s=1

q(+)
is,0 )

−1
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 IN THE 
LTD CAUSAL UNITARY

f → qq̄

• Let us consider the standard process,  at NLO in QCD with 
. The vacuum amplitudes in the LTD causal unitary are,

• where the momenta labelling are,

, , 

 ,  , 

f → qq̄
f ∈ {γ*, H}

q1 = ℓ1 + ℓ2 q2 = ℓ1 + ℓ3 q3 = ℓ1

q4 = ℓ2 q5 = ℓ2 − ℓ3 q6 = ℓ3

5

4

6

1
2

3 4

5

6

1

3
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1
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55

4

6

i3

i1

i2

J
i4

i1

i2

i3

J
i4

i1

i2

i3

i5

2

26Ramírez-Uribe et al, e-Print: 2404.05492



• Applying the procedure described before, we define de LO decay 
rate as,

• where,

• and

• with  and the standard results,β = 1 − 4m2/s

dΓLO
f→qq̄ =

dΦ ⃗ℓ 2

2 s
𝒜(2, f )

D (456)Δ̃456̄

Δ̃456̄ = π
β

δ ( | ⃗ℓ 2 | −
β s

2 )

𝒜(2, f )
D (456) =

2g(0)
f

x456

|ℳ(0)
f→qq̄ |2

λ456
+ 2λ456̄

|ℳ(0)
H→qq̄ |2 = 2sβ2|ℳ(0)

γ*→qq̄ |2 = 2s (1 + 1 − β2

d − 2 ) ,

,
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• The NLO decay rate is now,

• where the renormalized amplitude is given in 4 dimensions 
is,

• with the subtraction counterterms,

• and the renormalization constants in the LTD causal unitary.

dΓ(1)
f→qq̄ =

dΦ ⃗ℓ 1 ⃗ℓ 2

2 s ((𝒜(3, f,R)
D (456)Δ̃456̄ + 𝒜(3, f )

D (1356)Δ̃1356̄) + (5 ↔ 2,4 ↔ 3))

𝒜(3,H)
UV (456) = 2g(1)

H

x45
(ΔZ(UV)

H |ℳ(0)
f→qq̄ |2 − ΔZ(UV)

m 8m2(1 + β2) + Δ(UV)
H )

𝒜(3, f,R)
D (456) = (𝒜(3, f )

D (456) − 𝒜(3, f )
UV (456))

d=4
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• Finally, we compare 
our analytical results 
with numerical 
evaluations.

• We find perfect 
agreement with 
DREG for both Higgs 
and virtual photon 
decay.

• We present also the 
numerical evaluation 
for the heavy scalar 
decay into light scalars.

H → qq

γ* → qq

Φ → ϕϕ

μUV=(1/2,1,2) s

LTD causal unitary
DREG

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

2m / s

(g
f(0
) /g
f(1
) )
(Γ
f(1
) /Γ
f(0
) )



 AT NNLOΦ → ϕϕ
• The vacuum amplitud contributing to this particular 

process is given by the four loop amplitude, 

• where the extra four-momenta given by,

 and q7 = ℓ4 q8 = ℓ4 + ℓ1 + ℓ2

1

2

3 4

5

6

7 8

1
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• The unintegrated 
amplitude remains 
finite in the LTD 
causal unitary.

D
(3,H)(236)

D
(3,H)(236)D

(3,H)(456)

D
(3,H)(456)

threshold:D
(3,H)(456)+D

(3,H)(236)

LTD causal unitary
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-10
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0
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v

(g
f(0
) /g
f(1
) )
(d
Γ f(1

) /Γ
f(0
) )
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• The unintegrated 
amplitude remains 
finite in the LTD 
causal unitary.

• In addition, local 
cancellation of 
collinear 
singularities are 
present at NLO 
and NNLO

D
(4,Φ)(456)

D
(4,Φ)(1356)

D
(4,Φ)(35678)

total

LTD causal unitary
triple collinear

-3.0 -2.5 -2.0 -1.5 -1.0

-75000

-50000

-25000

0

25000

50000

75000

log 10v

(g
f(0
) /g
f(2
) )
(d
Γ f(2

) /Γ
f(0
) )

D
(3,H)(456)

D
(3,H)(1356)

total

LTD causal unitary
double collinear

-3.0 -2.5 -2.0 -1.5 -1.0

-10

-5
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log 10v

(g
f(0
) /g
f(1
) )
(d
Γ f(1

) /Γ
f(0
) )

N
L 
O

N
N
L 
O
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CONCLUSIONS
• New mathematical methods for computing higher order corrections are 

needed for upcoming LHC and the FCC observables.

• The LTD has opened a new methodology to tackle only physical 
divergences through causal representation of Feynman integrals.

• We find the first proof-of concept of the LTD causal unitary at NLO and 
NNLO free of unphysical singularities in the processes ,  
at NLO and  at NLO and NNLO.

• The results presented constitute a solid confirmation of the unique 
capabilities and advantages of LTD causal unitary at higher perturbative 
orders.

H → qq̄ γ* → qq̄
Φ → ϕϕ
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