

Improving the precision in low-energy neutrino detection using silicon and neon isotopic detectors

Laura Duque Herrera PhD Omar Miranda Romagnoli

Physics department, Cinvestav

XV Latin American Symposium on High Energy Physics

November 5, 2024

Standard Model of Elementary Particles

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

CEvNS Cross Section

$$\frac{d\sigma}{dT} = \frac{G_f^2}{2\pi} \mathcal{Q}_W^2 F^2(Q^2) \left(2 - \frac{MT}{E_v^2}\right)$$

- $E_{\nu} \rightarrow$ Incident neutrino energy
- $T \rightarrow$ Nuclear recoil energy
- $M \rightarrow$ Nuclear mass
- $G_f \rightarrow$ Fermi constant

Weak nuclear charge

$$Q_{W}^{2} = (\mathbb{Z} \mathbf{g}_{p}^{V} + \mathbf{N} \mathbf{g}_{n}^{V})^{2}$$

$$g_{p}^{V} = \frac{1}{2} - 2 \operatorname{sen}^{2} \theta_{W} \longrightarrow \operatorname{sen}^{2} \theta_{W} = 0.23867$$

$$g_{N}^{V} = -\frac{1}{2}$$

CEvNS detection

- Spallation Neutron Source in Oak Ridge National Laboratory, USA.
- Csl, Liquid Argon and Germanium detectors...

Neutrino Flux

Spallation Neutron Source (SNS)

Antineutrinos from reactors

Phenomenological parametrization:

$$S(E_{\upsilon}) = \exp\left(\sum_{p=1}^{6} \alpha_p E_{\upsilon}^{p-1}\right)$$

 $\begin{array}{c} \alpha \text{ coefficients are} \\ \text{determined by a fit to} \\ \text{the data} \end{array}$

A. Mueller et al. Phys. Rev. C 83, 054615 (2011)

Laura Duque Herrrera XV SILAFAE 2024

Non-Standard Interactions (NSI)

NSI' s provide a general framework to quantify new physics in the neutrino sector. And for neutral currents it can be described with the following effective four fermion Lagrangian

$$\mathcal{L}^{NSI-NC} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \varepsilon_{\beta\alpha}^{fP} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}Pf)$$

$$\varepsilon_{\alpha\alpha}^{fP} \longrightarrow \text{Non-universal parameter}$$

$$\varepsilon_{\beta\alpha}^{fP} \longrightarrow \text{Flavor-changing parameter}$$

$$\varepsilon_{\beta\alpha}^{qV} = \varepsilon_{\beta\alpha}^{qL} + \varepsilon_{\beta\alpha}^{qR}$$

The weak nuclear charge is modified so that the cross-section is now flavor dependent.

$$\begin{aligned} \frac{d\sigma}{dT} &\simeq \frac{G_F^2 M}{\pi} \left(1 - \frac{MT}{2E_v^2} \right) F^2(q^2) \left\{ \left[Z \left(g_V^p + 2\varepsilon_{\alpha\alpha}^{uV} + \varepsilon_{\alpha\alpha}^{dV} \right) + N \left(g_V^n + \varepsilon_{\alpha\alpha}^{uV} + 2\varepsilon_{\alpha\alpha}^{dV} \right) \right]^2 + \sum_{\beta \neq \alpha} \left[Z \left(2\varepsilon_{\beta\alpha}^{uV} + \varepsilon_{\beta\alpha}^{dV} \right) + N \left(\varepsilon_{\beta\alpha}^{uV} + 2\varepsilon_{\beta\alpha}^{dV} \right) \right]^2 \right\} \end{aligned}$$

Juan Barranco et al JHEP12(2005)021

Constraints on non-zero vector-like neutrino-quark NSI couplings

• Non-universal parameters

CHARM Experiment : Deep Inelastic Scattering with muon neutrinos.

B. Batell et al. (2022) 2207.06898

Flavor-changing parameters

Isotopic detectors

A. Galindo et al. Phys. Rev. D 105, 033001 (2022)

$$\chi^{2} = \sum_{ij} \bigl(\mathcal{N}_{i}^{\,\mathrm{theo}} - \mathcal{N}_{i}^{\,\mathrm{exp}}\bigr) \, \bigl[\sigma_{ij}^{2}\bigr]^{-1} \, \Bigl(\mathcal{N}_{j}^{\,\mathrm{theo}} - \mathcal{N}_{j}^{\,\mathrm{exp}}\Bigr)$$

 σ^2 is the covariant matrix that is related to the statistical and systematic uncertainties

$$\sigma^{2} = \begin{pmatrix} \sigma_{l}^{stat^{2}} + \sigma_{l}^{A^{2}} + \sigma_{l}^{B^{2}} & \sigma_{l}^{stat}\sigma_{m}^{stat} + \sigma_{l}^{A}\sigma_{m}^{A} + \sigma_{l}^{B}\sigma_{m}^{B} \\ \sigma_{l}^{stat}\sigma_{m}^{stat} + \sigma_{l}^{A}\sigma_{m}^{A} + \sigma_{l}^{B}\sigma_{m}^{B} & \sigma_{m}^{stat^{2}} + \sigma_{m}^{A^{2}} + \sigma_{m}^{B^{2}} \end{pmatrix}$$

where

Silicon isotopic detectors

 ^{28}Si : 14 protons and 14 neutrons

Colored regions: Correlated case

Si 5 Kg L ^ی Si Events (x10°) ۳ اور ۳ اور ³⁰Si Events (x10³) 6 0 0 6 0 10⁶ 0.4 – 0.7 KeV 0.7 - 1 KeV 90 100 110 120 Events/KeV 10² ²⁸Si Events (x10³) ²⁸Si Events (x10³) 10³ ²⁸Si ³⁰Si Events (x10³) 6 0 0 0 ³⁰Si Events (x10³) ³⁰Si 10^{2} 10^{-1} 10^{-1} 10⁰ T (KeV) 2-3 KeV 1-2 KeV ²⁸Si Events (x10³) Dashed lines: No-correlated case ²⁸Si Events (x10³)

Colored regions: Correlated case

Laura Duque Herrrera XV SILAFAE 2024

Neon isotopic detectors

Reactor neutrino flux

²⁰Ne : 10 protons and 10 neutrons

²²Ne : 10 protons and 12 neutrons

• 1 year of exposition

Conclusions

- The correlation between different isotope detectors can help to break degeneracies in the NSI parameters for the reactor antineutrino flux, besides improving the sensitivity to these NSI parameters.
- The increase in experimental capability for the development of larger isotope detectors may have a significant impact on the improvement of accuracy.
- This is a preliminary analysis that is expected to be refined to further study the capabilities of these detector arrays.

Thank you!

Weak Mixing Angle

Angle by which spontaneous symmetry breaking rotates the original W^3 and B vector boson plane, producing as a result the Z boson, and the photon γ

$$\binom{\gamma}{Z} = \begin{pmatrix} \cos\theta_W & \sin\theta_W \\ -\sin\theta_W & \cos\theta_W \end{pmatrix} \binom{B}{W^3}$$

Is related to the masses of the Z and W bosons

$$M_z = \frac{M_W}{\cos\theta_W}$$

Determines the connection between the **electric charge** through the coupling constants

Form factor

Klein-Nystrand distribution

$$F_{KN} = 3 \frac{j_1(QR_A)}{QR_A} [1 + (Qa_k)^2]^{-1} \qquad j_1 = \frac{sen(x)}{x^2} - \frac{cos(x)}{x}$$

• Symmetrized Fermi distribution

$$F_{SF} = \frac{3}{Qc[(Qc)^2 + (\pi Qa)^2]} \left[\frac{\pi Qa}{sinh(\pi Qa)} \right] \left[\frac{\pi Qasin(Qc)}{tanh(\pi Qa)} - Qccos(Qc) \right]$$

Events

$$\frac{dR}{dT} = t_{run} N_{targ} \int_{E_{\nu,min}}^{E_{\nu,max}} \frac{dN_{\nu}}{dE} \frac{d\sigma}{dT} dE$$

Total number of events:

$$T_{\text{thres}} \longrightarrow T_{\text{max}} \simeq \frac{2 E_{\nu,\text{max}}^2}{M}$$

Neutrino generalized interactions (NGI)

$$\mathcal{L}^{NGI} = \frac{G_F}{\sqrt{2}} \sum_X \bar{\nu} \, \Gamma^X \nu \bar{q} \, \Gamma_X \big(C_X^q + i \gamma_5 D_X^q \big) q$$

$$\Gamma^{X} = \left\{ \mathbb{I}, i\gamma^{5}, \gamma^{\mu}, \gamma^{\mu}\gamma^{5}, \sigma^{\mu\nu} \equiv \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}] \right\}$$

D. Aristizabal Sierra, Valentina De Romeri, and N. Rojas Phys. Rev. D 98, 075018 (2018)