Multi-component secluded WIMP dark matter and Dirac neutrino masses with an extra Abelian gauge symmetry

David Suárez

SILAFAE 2024

November 5, 2024

1. Motivation

2. Model

3. Parameter Space

Standard Model of Elementary Particles

Figure:

Motivation

Dark Sectors

Field Content

Field s	Generations	$SU(2)_L$	$U(1)_Y$	$U(1)_D$
$(u_{Rlpha})^{\dagger}$	3	1	0	-9
χ_L	1	1	0	4
$(\chi_R)^\dagger$	1	1	0	5
ψ_{L}	2	1	0	10
$(\psi_{\sf R})^\dagger$	2	1	0	-1
Н	1	2	-1/2	0
5	1	1	0	-9
η	1	2	-1/2	-1
Φ	1	1	0	-1

Table: Fermion and scalar content with its quantum numbers.

The Lagrangian of the model:

$$-\mathcal{L} \supset y_c \chi_R^{\dagger} \chi_L S + (y_x)^{ij} \psi_{Ri}^{\dagger} \psi_{Lj} S + (y_{nR})^{\alpha i} \nu_{R\alpha}^{\dagger} \psi_{Li} \Phi + (y_{nL})^{i\alpha} \psi_{Ri}^{\dagger} L_{\alpha} \cdot \tilde{\eta} + \text{h.c.}$$

where:

$$\begin{split} V(H,\eta,S,\Phi) &= -\mu^2 \tilde{H} \cdot H + m_\eta^2 \tilde{\eta} \cdot \eta + m_\Phi^2 |\Phi|^2 - \mu_S^2 |S|^2 - [\mu_c \tilde{\eta} \cdot H\Phi + \text{h.c.}] \\ &+ \frac{1}{2} \lambda_1 (\tilde{H} \cdot H)^2 + \frac{1}{2} \lambda_2 (\tilde{\eta} \cdot \eta)^2 + \lambda_3 \tilde{H} \cdot H \tilde{\eta} \cdot \eta + \lambda_4 \tilde{H} \cdot \eta \tilde{\eta} \cdot H + \frac{1}{2} \lambda_5 |S|^4 \\ &+ \lambda_6 \tilde{H} \cdot H |S|^2 + \lambda_7 |S|^2 \tilde{\eta} \cdot \eta + \frac{1}{2} \lambda_8 |\Phi|^4 + \lambda_9 |\Phi|^2 \tilde{H} \cdot H \\ &+ \lambda_{10} |\Phi|^2 |S|^2 + \lambda_{11} |\Phi|^2 \tilde{\eta} \cdot \eta \end{split}$$

The mass matrix for scalars that acquire VEV:

$$m_{h}^{2} = \begin{pmatrix} -\mu^{2} + \frac{1}{2}\lambda_{6}v_{s}^{2} - \frac{3\lambda_{1}v^{2}}{2} & \lambda_{6}vv_{s} \\ \lambda_{6}vv_{s} & -\mu_{s}^{2} + \frac{3}{2}\lambda_{5}v_{s}^{2} + \frac{\lambda_{6}v^{2}}{2} \end{pmatrix}$$

that is diagonalized by a unitary transformation $Z_H m_h^2 Z_H^T = m_{h,\text{diag}}^2$, such that:

$$\begin{pmatrix} h_0 \\ S^0 \end{pmatrix} = Z_H \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

We can write the λ_1 , λ_5 , and λ_6 couplings can be written in terms of the mixing angle θ and the eigenvalues $m_{h_{1,2}}$ as:

$$\lambda_{1} = \frac{1}{2v^{2}} \left(m_{h_{1}}^{2} + m_{h_{2}}^{2} - \frac{(m_{h_{2}}^{2} - m_{h_{1}}^{2})}{\sqrt{1 + \tan^{2}(2\theta)}} \right)$$
$$\lambda_{5} = \frac{1}{2v_{s}^{2}} \left(m_{h_{1}}^{2} + m_{h_{2}}^{2} + \frac{(m_{h_{2}}^{2} - m_{h_{1}}^{2})}{\sqrt{1 + \tan^{2}(2\theta)}} \right)$$
$$\lambda_{6} = \frac{1}{2vv_{s}} \frac{m_{h_{2}}^{2} - m_{h_{1}}^{2}}{\sqrt{1 + \tan^{2}(2\theta)}} \tan(2\theta)$$

$$\mathcal{L} = \Xi^{T} m^{2} \Xi = \begin{pmatrix} \eta^{0} & \Phi \end{pmatrix} \begin{pmatrix} m_{\eta}^{2} + \frac{1}{2}\lambda_{7}v_{s}^{2} + \frac{1}{2}\lambda_{3}v^{2} + \frac{1}{2}\lambda_{4}v^{2} & -\frac{1}{2}v\mu_{c} \\ -\frac{1}{2}v\mu_{c} & m_{\Phi}^{2} + \frac{1}{2}\lambda_{10}v_{s}^{2} + \frac{1}{2}\lambda_{9}v^{2} \end{pmatrix} \begin{pmatrix} \eta^{0} \\ \Phi \end{pmatrix}$$

where the mass matrix m_{Ξ}^2 can be diagonalized via an orthogonal transformation:

$$U_{\Xi}m_{\Xi}^{2}U_{\Xi}^{T} = (m_{\Xi})^{\text{diag}} = \text{diag}(m_{1}, m_{2})$$

with:

$$U_{\Xi} = \begin{pmatrix} \cos \theta_{\Xi} & \sin \theta_{\Xi} \\ -\sin \theta_{\Xi} & \cos \theta_{\Xi} \end{pmatrix}$$

The mass Lagrangian for fermions in the second dark sector is:

$$\mathcal{L} = \frac{v_s}{\sqrt{2}} \begin{pmatrix} \psi_L^1 & \psi_L^2 \end{pmatrix} \begin{pmatrix} y_x^{11} & y_x^{12} \\ y_x^{21} & y_x^{22} \end{pmatrix} \begin{pmatrix} \psi_R^1 \\ \psi_R^2 \end{pmatrix} + \text{h.c.} = \psi_L^T m_{\psi} \psi_R + \text{h.c.}$$

where the matrix m_{ψ} is diagonalized as:

$$Z_L m_{\psi_2} Z_R^{\dagger} = (m_{\psi})^{\text{diag}} = \text{diag}(m_{\Psi_2^1}, m_{\Psi_2^2})$$
 (1)

with

$$Z_{L,R} = \begin{pmatrix} \cos \theta_{L,R} & \sin \theta_{L,R} \\ -\sin \theta_{L,R} & \cos \theta_{L,R} \end{pmatrix}$$
(2)

Neutrino masses

Kinetic Mixing and EW Gauge Bosons

This model has a new gauge boson B'_{μ} associated with the new $U(1)_D$ gauge symmetry that interacts with the SM sector via kinetic mixing ϵ . The Lagrangian for B'_{μ} reads:

$$egin{aligned} \mathcal{L}_{B'} &= - rac{1}{4} B'_{\mu
u} B'^{\mu
u} - rac{\epsilon}{2} B'_{\mu
u} B^{\mu
u} + rac{i}{2} \sum_{k=1}^2 \left[\overline{\Psi}_k \gamma^\mu (a_k + b_k \gamma^5) B'_\mu \Psi_k
ight] \ &+ (\mathcal{D}^X_\mu X)^\dagger \mathcal{D}^{X\mu} X + 9i \sum_{lpha=1}^2 \overline{
u}_lpha \gamma^\mu (1 + \gamma^5) B'_\mu
u_lpha \end{aligned}$$

where, $a_k = q_{\psi_L^k} - q_{\psi_R^k}$, $b_k = q_{\psi_L^k} + q_{\psi_R^k}$, $B'_{\mu\nu} = \partial_\mu B'_\nu - \partial_\nu B'_\mu$, $B_{\mu\nu} = \partial_\mu B_\nu - \partial_\nu B_\mu$ are the strength tensor for B'_μ and B_μ respectively, and:

$$\mathcal{D}_{\mu}^{oldsymbol{X}}=\partial_{\mu}-oldsymbol{i}oldsymbol{q}_{oldsymbol{X}}oldsymbol{B}_{\mu}^{\prime}$$

for $X = S, \Phi, \eta$ and q_X are the charges under $U(1)_D$ of the scalar fields, g_D is the new gauge coupling and ν_{α} are Dirac neutrinos.

Kinetic Mixing and EW Gauge Bosons II

In the basis $V_{\mu} = (B_{\mu}, W_{\mu}^3, B_{\mu}')^T$, the mass matrix for the neutral gauge bosons reads:

$$\mathcal{L}_M = rac{1}{2} V^{T\mu} M_G^2 V_\mu$$

where:

$$M_{G}^{2} = \frac{1}{4}v^{2} \begin{pmatrix} g_{1}^{2} & -g_{1}g_{2} & -g_{1}^{2}\epsilon \\ -g_{1}g_{2} & g_{2}^{2} & g_{1}g_{2}\epsilon \\ -g_{1}^{2}\epsilon & g_{1}g_{2}\epsilon & 324g_{D}^{2}\frac{v_{S}^{2}}{v^{2}} + g_{1}^{2}\epsilon^{2} \end{pmatrix}$$

After the diagonalization of this matrix, we have three eigenstates. Those are the massless γ photon, the SM Z gauge boson with a mass $m_Z \approx 91.1$ GeV, and the new dark photon Z' with a mass $m_{Z'} \approx 9g_D v_s/(1 + \epsilon^2)$.

The easiest way to generate Dirac neutrinos masses is to add right-handed neutrinos which couplet to the SM lepton doublet through the term:

$$\mathcal{L}= extsf{h}_{ij}^{
u}\epsilon^{lphaeta} extsf{L}_{lpha}^{i} extsf{H}_{eta}(
u_{R}^{j})^{\dagger}$$

The Dirac neutrino mass matrix:

$$M^{
u}_{ij}=y^{
u}_{ij}rac{m{v}}{\sqrt{2}}$$

then the Yukawa couplings must be of order 10^{-13} .

The relic abundance of DM Ω_i (i = 1, 2) for (Ψ_1, Ψ_2^1) in the standard freeze-out is obtained after solving the Boltzmann equations:

$$\frac{\mathrm{d}\,n_1}{\mathrm{d}\,t} = -\,\sigma_v^{1100}(n_1^2 - \overline{n}_1^2) - \sigma_v^{1122}\left(n_1^2 - n_2^2 \frac{\overline{n}_1^2}{\overline{n}_2}\right) - 3Hn_1$$
$$\frac{\mathrm{d}\,n_2}{\mathrm{d}\,t} = -\,\sigma_v^{2200}(n_2^2 - \overline{n}_2^2) - \sigma_v^{2211}\left(n_2^2 - n_1^2 \frac{\overline{n}_2^2}{\overline{n}_1}\right) - 3Hn_2$$

where $n_i(i = 1, 2)$ is the number density for the DM particle, \overline{n}_i their respective equilibrium values and σ_v^{abcd} is the thermally averaged cross section, that satisfies $\overline{n}_a \overline{n}_b \sigma_v^{abcd} = \overline{n}_c \overline{n}_d \sigma_v^{cdab}$.

It allows us to study the relevant processes that play a role in the evolution of the Boltzmann equations and affect the relic density of DM:

$$\zeta_{anni}^{i}(T) = \frac{\sigma_{v}^{ii00}(T)}{\sigma_{v}^{ii00}(T) + \sigma_{v}^{iijj}(T)}$$
$$\zeta_{conv}^{i}(T) = \frac{\sigma_{v}^{iijj}(T)}{\sigma_{v}^{ii00}(T) + \sigma_{v}^{iijj}(T)}$$

 $i \neq j = 1, 2$. Those parameters are evaluated at the typical freeze-out temperature: $T \approx m_{\chi_1}/25$. Notice that by construction, The decay width of the dark photon into neutrinos renders:

$$\Gamma_{Z' o \overline{
u}_i
u_i} = 3 \, M_{Z'} rac{(g_1^2 \epsilon^2 + 4 \, q_{
u_R}^2 \, g_D^2)}{64 \pi}$$

DM Annihilation I

DM Annihilation II

DM Conversion

One-Component Limit

Parameter Space I

Parameter	Range	
$M_{Z'}/{ m GeV}$	$1 - 10^{3}$	
ВD	$10^{-3} - 1$	
Ус	$10^{-3} - 1$	
$(m_{\Psi_2^j}-m_{\Psi_1})/{ m GeV}$	$1-5 imes 10^3$	
θ	$10^{-6} - 10^{-3}$	
θ_L, θ_R	$10^{-3}-2\pi$	
λ_k	$10^{-4} - 1$	
$m_{h_2}/{ m GeV}$	$125-5 imes10^3$	
m_n^2/GeV^2	$10^{6}-10^{8}$	
m_{Φ}^2/GeV^2	$10^{6}-10^{8}$	
$\mu_c/{ m GeV}$	$10^2-2 imes10^3$	
ϵ	$10^{-12} - 10^{-2}$	
УnL	$10^{-4} - 1$	

Parameter Space II

Parameter Space III

Parameter Space IV

Parameter Space V

Parameter Space VI

Parameter Space VII

We show a complete UV realization of a secluded WIMP dark matter model with an extra Abelian gauge symmetry that includes two-component dark matter candidates, where Dirac neutrino masses are generated at one-loop via a scotogenic realization of the effective operator for Dirac neutrino masses in the SM. Our paper explains the relic abundance of dark matter, even without kinetic mixing. Also, it can be tested in direct detection experiments like DARWIN. However, the annihilation of dark matter particles into gamma rays is highly suppressed due to the dark nature of the Abelian gauge symmetry. The model's parameter space explains the relic abundance of DM and Dirac neutrino masses. It is also compatible with cosmological and theoretical constraints, including the branching ratio of SM into invisible. Big Bang nucleosynthesis restrictions, and the number of relativistic degrees of freedom in the early universe, even without kinetic mixing.

Thank you!