

Hadronic signatures of Quasars captured by Fermi-LAT

Antonio Galván in collaboration with: Nissim Fraija, Hermes León, Edilberto Aguilar, Maria Dainotti, José Antonio de Diego Onsurbe.

Instituto de Física - UNAM

XV Latin American Symposium on High Energy Physics. Cinvestav November 5th 2024

IceCube Observatory

nstituto de Física

Involve 7 stages of construction 2004-2011

Antonio Galván - Hadronic signatures of Quasars captured by Fermi-LAT

Deep Core

Eiffel Tower

324 m

High Energy Neutrinos

3

High Energy Neutrinos

Instituto de Físio

A quick look in the Active Nuclei Neighbourhoods

AGN Radio-Radio-loud quiet Seyfert Radio LINERS? Blazars Quasars Galaxies Galaxies FR Class 1 📕 FR Class 2 **OVVs BL** Lacs Type 1 Type 2 Type 1 Type 2 Radio loud Radio quiet

High Energy Neutrinos

High energy skymap (neutrinos + photons)

Hadronical Signatures on AGNs

Instituto de Física

Time Dependent Electron Distribution

Time Dependent Electron Distribution

Instituto de Física

Search strategy

Neutrino time detection

Time Three search windows have been defined centered on the time of neutrino detection, motivated by the activity of TXS 0506+056. (IceCube Collaboration et. al. 2018, Acciari et al. 2022).

- Weekly: Search for electromagnetic activity of the possible progenitor one week before and one week after the neutrino detection.
- Monthly: Search for electromagnetic activity of the possible progenitor one month before and one month after the neutrino detection.

Annual: Search for electromagnetic activity of the possible progenitor one year before and one year after the neutrino detection.

Spectral energy distribution quasi-contemporaneous to the neutrino detection as well as a historical one.

Serendipity correlations

Instituto de Física

Results (4FGL J0206.4-1151) Preliminary

Galván, A. et al. 2024. In prep

Summary

- The current model, calculating the luminosity values of proton $L_p \sim$ (0.03-4.27)x10⁴⁵ erg/s, electron $L_e \sim$ (0.02-57.7)x10⁴⁵ erg/s magnetic field $L_B \sim$ (0.09-64.7)x10⁴⁵ erg/s with standard values in quasars, the model discrepancies one order of magnitude between the observed and predicted flux of high-energy neutrinos with this simple model.
- The hypothesis of considering a steady-state electron distribution is a rather strong consideration. Thus, solving the Fokker-Planck equation provides physical meaning to the model beyond considering a power law.

More multifrequency observations are needed, as they provide information necessary to restrict parameters in the model.

Thanks for your attention

