$au^- o \pi^- \eta ar{ u}_ au$ QED one-loop effects.

Diego Portillo Sánchez

In collaboration with Dr. Gabriel López Canstro. Dr. Gerardo Hernández Tomé

Searches of new physics \bigcirc 0 \bigcirc \bigcirc \bigcirc 0 \mathbf{i} 0 0 \bigcirc \bigcirc \bigcirc

High precision measurements.

 \bigcirc

0

Suppressed processes within the standard model.

Look for forbidden processes.

0

Searches of new physics 0 \bigcirc \square \bigcirc 0 \mathbf{i} 0 0 \bigcirc \bigcirc \bigcirc \bigcirc 0 0

High precision measurements

Suppressed processes within the standard model.

Look for forbidden processes

Why $au^- o \pi^- \eta \, ar
u_ au$?/

Proposed by C. Leroy and J. Pestieau. (1978)

$${\cal G}={\cal C}\,e^{i\,{\cal I}_2}$$

$${
m BR}(au^- o \pi^- \eta
u_ au) < 7.3 imes 10^{-5} {
m (Belle)}$$

• Analysis in JHEP12(2017)027 (EFT perpective).

 $\epsilon_{\pi\eta} = rac{\sqrt{3}}{4} rac{m_d - m_u}{m_s - ar{m}} pprox (1.21 \pm 0.23) imes 10^{-2}$

Ref.	$BR \times 10^5$
* (1982) Tisserant, Truong	1.86
$(\rho, a_0 \text{ contributions})$	
* (1987) Bramon, Narison, Pich	1.62
$(\rho, a_0 \text{ contributions})$	
(1994) Neufeld, Rupertsberger	1.21
(NLO ChPT)	
*(2008) Nussinov, Soffer	1.36
$(\bar{q}q \text{ model})$	
(2010) Paver, Riazuddin	[0.4, 2.9]
$(\rho, \rho', a_0, a'_0 \text{ VMD})$	
*(2012) Volkov, Kostunin	0.48
(NJL model)	
(2014) Descotes-Genon, Moussallam	0.33
(ChPT + analyticity)	
(2016) Escribano, Gonzalez, Roig	1.67 ± 0.09
(RChT-3 coupled channels)	

Previous calculations

QED one-loop

$${\cal F}_i(k^2)=rac{m_
ho^2}{m_
ho^2-k^2}$$

$$\langle \eta(p_\eta)\pi^-(p_\pi)|ar{d}\gamma_\mu u|0
angle = -\sqrt{2}igg[igg(q_\mu'-rac{\Delta_{\eta\pi}}{s}q_\muigg)F_+(s,t)+rac{\Delta_{\eta\pi}}{s}q_\mu\,F_0(s,t)igg]$$

Deviation from tree-level prediction.

$$\Delta(\pi\eta) \equiv rac{|{
m BR_{d-u+e.m.}}(\pi\eta)-{
m BR_{d-u}}(\pi\eta)|}{{
m BR_{d-u}}(\pi\eta)} = (13.5{+4.0 \atop -3.0} \pm 2.8)\%\,.$$

$$\epsilon_{\pi\eta} = rac{\sqrt{3}}{4} rac{m_d - m_u}{m_s - ar{m}} pprox (1.21 \pm 0.23) imes 10^{-2}$$

Diagram	$BR(\tau^- \to \pi^- \eta \nu_\tau)_S$	$BR(\tau^- \to \pi^- \eta \nu_\tau)_V$	$BR(\tau^- \to \pi^- \eta \nu_\tau)$
e. m.	1.64×10^{-7}	4.15×10^{-8}	2.15×10^{-7}
d-u	1.20×10^{-5}	2.47×10^{-6}	1.46×10^{-5}
d-u + e. m.	1.34×10^{-5}	$3.14 imes 10^{-6}$	1.65×10^{-5}

Eta prime analysis.

$$\epsilon_{\pi\eta'} = (3\pm1) imes10^{-3}$$

$$\Delta(\eta'\pi) \equiv rac{|\mathrm{BR}_{\mathrm{d-u+e.m.}}(\eta'\pi) - \mathrm{BR}_{\mathrm{d-u}}(\eta'\pi)|}{\mathrm{BR}_{\mathrm{d-u}}(\eta'\pi)} = (78^{+2}_{-4} \pm 38)$$

Diagram	$BR(\tau^- \to \pi^- \eta' \nu_\tau)_S$	$BR(\tau^- \to \pi^- \eta' \nu_\tau)_V$	$BR(\tau^- \to \pi^- \eta' \nu_\tau)$
Total e.m.	1.73×10^{-8}	2.92×10^{-9}	2.08×10^{-8}
d-u	5.76×10^{-8}	2.15×10^{-9}	5.97×10^{-8}
d-u + e. m.	9.70×10^{-8}	8.63×10^{-9}	1.06×10^{-7}

Conclusions

- We studied the leading electromagnetic contribution to the IB observable \$\tau\to\pi^{-}\eta\nu_{\tau}\$.
- Taking into account both IB sources, e.m and quark masses, we compute the interference in order to show the impact of those new contribution shown at present work.
- We find that those photon contributions can be as large as 13% for the \$\pi^-\eta\$ channel (78% for the \$\pi^-\eta'\$ channel) of the total contribution for the input parameters used in this work.