

Towards FCC Detector Conceptual Design

XV Latin American Symposium on High Energy Physics, 8 November 2024

Mogens Dam, Niels Bohr Institute, Copenhagen

Introduction - pp versus e⁺e⁻

pp: look for striking signal in large background

- High rates of QCD backgrounds
 - Complex triggering schemes
 - High levels of radiation
- High cross-sections for coloured states
- High-energy circular pp colliders feasible
 - $\blacktriangleright \quad Large mass reach \rightarrow direct exploration$
- S/B ≈ 10⁻¹⁰ before trigger; S/B ≈ 0.1 after trigger

e⁺e⁻: detect everything; measure precisely

- No pileup, no underlying event
- Clean experimental environment
 - Trigger-less readout
 - Low radiation levels
- Superiour sensitivity for electro-weak states
- Large indirect mass reach
- S/B ≈ 1

pp versus e⁺e⁻: Cross Section Comparison

FCC-ee Experimental Challenges

- 30 mrad beam crossing angle
 - Detector B-field limited to 2 Tesla at Z-peak operation
 - Very complex and tightly packed MDI (Machine Detector Interface)
- "Continuous" beams (no bunch trains); bunch spacing down to 20 ns
 - **D** Power management and cooling (no power pulsing as possible for linear colliders)
- Extremely high luminosities
 - **u** High statistical precision control of systematics down to 10⁻⁵ level
- Physics events at up to 100 kHz
 - Fast detector response
 - □ High occupancy in the inner layers and forward region (Bhabha scattering, γγ → hadrons)
 - Beamstrahlung background
 - Strong requirements on sub-detector front-end electronics and DAQ systems
 - * Is a trigger needed?
- More physics challenges
 - Absolute luminosity measurement to 10^{-4} luminometer acceptance to $\mathcal{O}(1 \ \mu m)$
 - Detector acceptance to ~10⁻⁵ acceptance definition to O(10 µrad), hermeticity (no cracks)
 - Stability of momentum measurement stability of magnetic field wrt E_{cm} (10⁻⁶)

MDI region engineering has started

FCC-ee Physics Programme

e⁺e⁻: Higgs Production and Decay

Mogens Dam / NBI Copenhagen

November 8, 2024

Vertex Detector and Tracking

Mogens Dam / NBI Copenhagen

Particle Identification

- PID capabilities across a wide momentum range is essential for flavour studies; will enhance overall physics reach
- **IDEA Drift Chamber** promises > $3\sigma \pi/K$ separation up to 35-100 GeV
 - □ dE/dx cross-over window at 1 GeV, can be alleviated by unchallenging TOF measurement of $\delta T \lesssim 0.5$ ns
- Time of flight (TOF) alone δT of ~10 ps over 2 m (LGAD) \Box could give $3\sigma \pi/K$ separation up to ~5 GeV
- Alternative approaches, in particular (gaseous) RICH counters also investigated (e.g. A pressurized RICH Detector – ARC) \Box could give $3\sigma \pi/K$ separation from 5 GeV to ~80 GeV

ARC: A possible RICH layout in an FCC-ee experiment

of sigma

9

8

3

2

1 0

0.1

Calorimetry

Energy coverage < 300 GeV \rightarrow 22 X₀, 7 λ

Precise jet angular resolution

Jet energy: $\sigma(E_{jet})/E_{jet} \simeq 30\% / VE [GeV]$?

⇒ Mass reconstruction from jet pairs

Resolution important for control of (combinatorial) backgrounds in multi-jet final states with E_T^{miss}

How to achieve jet energy res. of ~3-4% at 50GeV:

- Highly granular calorimeters
- Particle flow reconstruction and possibly in addition techniques to correct non-compensation (e/h≠1), e.g. dual read-out

Detector technology (ECAL & HCAL)	E.m. energy res. stochastic term	E.m. energy res. constant term	ECAL & HCAL had. energy resolution (stoch. term for single had.)	ECAL & HCAL had. energy resolution (for 50 GeV jets)	Ultimate hadronic energy res. incl. PFlow (for 50 GeV jets)
Highly granular Si/W based ECAL & Scintillator based HCAL	15-17%[12,20]	1% [12,20]	45-50% [45,20]	pprox 6~% ?	4 % [20]
Highly granular Noble liquid based ECAL & Scintillator based HCAL	8-10%[24,27,46]	< 1 % [24, 27, 47]	$pprox 40 \% \ [27,28]$	pprox 6% ?	3-4% ?
Dual-readout Fibre calorimeter	$11 \% \ [48]$	< 1 % [48]	pprox 30% [48]	4-5% [49]	3-4% ?
Hybrid crystal and Dual-readout calorimeter	3 % [30]	< 1 % [30]	$\approx 26 \%$ [30]	5-6%[30,50]	3-4% [50]

For more information see https://link.springer.com/article/10.1140/epjp/s13360-021-02034-2

• Excellent Jet resolution: $\approx 30\%/\sqrt{E}$

ECAL resolution:

- □ Higgs physics \approx 15%/ \sqrt{E}
- □ For heavy flavour programme better resolution beneficial: → 8%/√E → 3%/√E
- Fine segmentation for PF algorithm and powerful γ/π° separation and measurement

FCC-ee Detector Concepts Fast Overview

Conceptually extended from CLIC detector design

- Full silicon vertex detector + tracker
- High granularity silicon-tungsten ECAL
- High granularity scintilator-steel HCAL
- Instrumented return-yoke for muon detection
- Large 2 T coil surrounding calorimeter system

Engineering needed for adaptation to continous beam operation (no power pulsing)

Cooling of Si-sensors & calorimeters

Possible detector optimisations

- Improved ECAL and momentum resolutions
- Particle identification (TOF and/or RICH)

Specifically designed for FCC-ee

- Silicon vertex detector + "wrapper"
- Low X₀ drift chamber with high-resolution particle ID via ionisation measurement
- Crystal-based ECAL (now baseline)
- Light, thin coil
- Dual-readout calorimeter; radial scintilating + Cherenkov fibres
- Instrumented yoke with MPGC muon system

Allegro (Noble-Liquid ECAL based)

Specifically designed for FCC-ee, recent concept, under development

- Silicon vertex detector + "wrapper"
- Low X₀ drift chamber (possibly straw tracker) with high-resolution particle ID via ionisation measurement
- High granularity Noble Liquid ECAL as core
 - Pb/W + LAr (possibly denser W+LKr)
- Light, thin coil inside same cryostat as ECAL
- CALICE-like or TileCal-like HCAL
- Muon systems

FCC-ee Detector Concepts Fast Overview – Evolving!

Allegro (Noble-Liquid ECAL based)

Specifically designed for FCC-ee, recent concept,

ibly straw tracker)

le ID via ionisation

id ECAL as core

/ denser W+LKr)

cryostat as ECAL

ICAL

fied)

Work Ahead – Some Points of Attention

General: Develop 4 detector systems that match the performance set by physics benchmarks

- Vertex Detector & MDI Region:
 - Sensor technology exists (MAPS); light-weight support structures, low-material power and cooling infrastructure to be developed
 - Continue & strengthen engineering effort on MDI region, support of vertex detectors and LumiCal – develop MDI for all detector concepts
- Tracking:
 - **Different proposals: Si tracker, drift chamber or straw tracker**
 - Minimize material, start engineering of support structures, services, power, cooling...
- Particle ID:
 - Interesting idea to complement Si tracker with Cherenkov detector
 - Low GWP gases/gels for Cherenkov detectors
 - **D** Precise timing (e.g. LGAD)
- ♦ Calorimetry:
 - Continue building prototypes of all proposed calorimeters; test beams
 - Define needed granularity, performance optimization
 - Engineering
- Muon Tagger / Muon System:
 - Need to optimise design for physics reach
 - Large area gas detectors, technology exists
 - **Low GWP** gases for gas detectors (e.g. RPC)

- Software:
 - Detector concepts existing in FCC SW, modular approach, can easily plug in new detectors, new ideas
 - Particle flow starting to work; needs tuning for each detector concept
- Trigger and DAQ:
 - □ Do we need a trigger or can we read out everything (keeping in mind power & cooling needs → more material)
 - □ Closely linked to studies of occupancies caused by background (Beamstrahlung, $\gamma\gamma \rightarrow$ hadrons, Bhabha scattering)
- Detector Solenoid Magnets:
 - Effort to re-establish availability of a reinforced aluminum-stabilized Nb-Ti conductors needed for FCC-ee, as well as to investigate novel HTS-based conductor technology and its implications
- Cryostats:
 - Further development of low-material carbon-composite cryostats as well as carbon fibre and aluminum honeycomb
 - Tightness of flanges to stainless steel feed-throughs
 - **•** Tests of prototypes
- Normalisation:
 - Design of very compact LumiCal w. extreme O(1 μm) geometrical precision, high rate.
 - Keep eye on O(10 µrad) acceptance definition of forward detectors (tracking + calorimetry)

Extras

Vertex Detector

- Impact param., secondary vertices, flavour tag, lifetimes
- Very strong development: Lighter, more precise, closer

	r beam pipe	1 st VTX layer
ILC	12 MM	14 mm
CLIC	29 mm	31 mm
FCC-ee	10 mm	13 mm

Strong ALICE Vertex detector development

zimuthal angle (

- Conditions/requirements largely common between ALICE and FCC-ee
 - Moderate radiation environments
 - No need for picosecond timing
 - High resolution and low multiple scattering is key
- Heavy flavour tagging results (FCC-ee simulation)

 ML based: large lifetimes, displaced vertices/tracks, large track multiplicity, non-isolated e/µ

Mogens Dam / NBI Copenhagen

Recent development: IDEA Vertex Detector Design

Inspired by Belle II (and ALICE ITS) based on DMAPS (Depleted Monomithic Active Pixels) technology

- Inner Vertex (ARCADIA based)
 - \square Modules of 25 x 25 μm pixel size, 50 μm thick
 - a 3 barrel layers at 13.7, 22.7, 33 mm
 - ✤ 0.3% X₀ per layer
 - \square Point resolution of ~3 mm
- Outer Vertex and disks (ATLASPIX3 based)
 - \square Modules of 50 x 150 μm pixel size, 50 μm thick
 - □ 2 barrel layers at 130, 315 mm; 2 x 3 disk layers
 - * 1% X_0 per layer
- Performance

Efficiency of ~100%
Extremely low fake hit rate

Tracking Systems - Momentum measurement

Particles from Higgs production process are generally of moderate momentum

Tracking systems and material budgets

Mogens Dam / NBI Copenhagen

November 8, 2024

Tracking system variants

Pros:

- Low material budget (in barrel)
- Proven technologi, e.g. aleph and delphi at LEP
- Continous tracking; advantage for secondary vertex finding
- Particle ID via dE/dx measurement Challenges:
- Not obvious if can be operated at ~100kHz FCC-ee event rate

Pros:

- Very low material budget
- Proven technologi: KLOE at Daqne
- Continous tracking; advantage for secondary vertex finding
- Particle ID via dE/dx (dN/dx) measurement
 Challenges:
- Need to prove operation at ~100 kHz
 FCC-ee physics rate and realistic
 backgrounds via full simulation studies

Pros:

- Very precise space points
- Proven technologi, e.g. LHC detectors
- No gas system

Challenges:

- No precise Particle Identification
 - Possibly TOF (or add RICH system)
- Optimisation of sensor thickness for lower material budget
- Design of (light) cooling system for operation at continous collisions

Normalisation

Ambitious goals:

- Absolute luminosity measurement to $\lesssim 10^{\text{-4}}$
- Relative luminosity (energy-to-energy point) to $\lesssim 10^{-5}$
- Inter-channel normalisation (e.g. $\mu\mu$ /multi-hadronic) to $\lesssim 10^{-5}$

Luminosity Monitors (low angle Bhabha)

- W-Si sandwich
- Many R&D/engineering challenges
 - Precision on acceptance boundaries to $O(1 \ \mu m)$!
 - Mechanical assembly, metrology, alignment
 - Support / integration in crowded and complex MDI area

Complementary lumi process: large angle $e^+e^- \rightarrow \gamma\gamma$ $\Box \ 10^{-4} \Rightarrow$ control of acceptance boundary $\delta\theta_{min}$ to $\mathcal{O}(10 \ \mu rad)$ \Box Possible bckg: $Z \rightarrow \pi^0 \gamma \Rightarrow$ need to control $\mathcal{B}(Z \rightarrow \pi^0 \gamma)$ to 10^{-7}

Acceptance of $Z \rightarrow \ell \ell$ to 10^{-5}

□ Control of acceptance boundary $\delta \theta_{min}$ to *O*(10 µrad) □ No holes or cracks

A few words on Readout, DAQ, Data Handling

- In particular at Z-peak, challenging conditions
 - 50 MHz BX rate
 - \square 50 kHz Z rate + ~100 kHz LumiCal rate
 - □ Absolute normalisation goal 10⁻⁴
- Different sub-detectors tend to prefer different integration times
 - □ Silicon VTX/tracker sensors: $O(\mu s)$ [also to save power]
 - ✤ Time-stamping will be needed
 - □ LumiCal: Preferential at ~BX frequency (20 ns)
 - 50-100 kHz of low angle Bhabhas; very compact detectors; avoid pile-up
- How to organize readout?
 - □ Hardware trigger with latency buffering a la LHC ??
 - Probably not...
 - Which detector element would provide the trigger ?
 - Free streaming of self-triggering sub-detectors; event building based on precise time stamping
 - Need careful treatment of relative normalisation of subdetectors – 10⁻⁵ level

 Need to consider DAQ issues when designing detectors and their readout

◆ Off-line handling of 𝒪(10¹³) events for precision physics
 □ ... and Monte Carlo

Very high statistics Z factories - TeraZ

Running conditions:

- Extremely large statistics / statistical precision
 - ...need small systematics (10⁻⁵) to match
- Physics event rates up to 100 kHz
- Bunch spacing down to 20 ns
 - Continous beams, no power pulsing
- No pileup, no underlying event, ...
 - ...however, still pile-up at the 10⁻³ level

Detector optimization to be done for extremely rich	
physics capabilities especially at the Z pole with up to	
5x10 ⁻⁵ Z decays: 10 ¹² bb, cc, 2×10 ¹¹ ττ, etc	

- Search for rare processes: Excellent acceptance definition, hermeticity, sensitivity to displaced vertices
- Luminosity measurement at 10⁻⁴ (abs), 10⁻⁵ (rel)
- Acceptance definition at $\leq 10^{-5}$
- Excellent b/c/gluon separation
- **PID**: TOF, dE/dx, Cherenkov?

FCC-ee parameters		Z	W+W-	ZH	ttbar
√s	GeV	91.2	160	240	350-365
Luminosity / IP	10 ³⁴ CM ⁻² S ⁻¹	230	28	8.5	1.7
Bunch spacing	ns	19.6	163	994	3000
"Physics" cross section	pb	40,000	10	0.2	0.5
Total cross section (Z)	pb	40,000	30	10	8
Event rate	Hz	92,000	8,400	1	0.1
"Pile up" parameter [μ]	10 ⁻⁶	1,800	1	1	1

The Z physics programme is still under development, in particular for rare processes and for heavy flavours:

• Detailed detector requirements still to be finalised, especially for PID.

e⁺e⁻ Higgs (and EW & top) Factories

FCC-ee run plan with 4 IPs (now default) :

Numbers of events in 15 years, tuned to maximise the physics outcome					√s uncertainty	
ZH maximum	√s ~ 240 GeV	3 years	2 X 10 ⁶	$e^{+}e^{-} \rightarrow ZH$ $e^{+}e^{-} \rightarrow \overline{t}t$ $e^{+}e^{-} \rightarrow Z$ $e^{+}e^{-} \rightarrow W^{+}W^{-}$ $e^{+}e^{-} \rightarrow H_{125}$	Never done	2 MeV
tt threshold	√s ~ 365 GeV	5 years	2 X 10 ⁶		Never done	5 MeV
Z peak	√s ~ 91 GeV	4 years	6 X 10 ¹²		LEP x 10 ⁵	< 50 keV
WW threshold+	√s ≥ 161 GeV	2 years	3 X 10 ⁸		LEP x 10 ³	< 200 keV
[s-channel H	√s = 125 GeV	5? years	~7000		Never done	< 100 keV

- From an experimental point of view, operation at the Z-pole is the most challenging
- Enormous Z-decay statistics drives detector design
 - Statistical precsion for EWPOs typically 300 times smaller than LEP (current) uncertainties
 - > Need systematic uncertainties to match
 - > Ultimate factory for heavy flavour: b, c, (s), τ
 - > Need ultimate heavy flavour performance
 - Intensity frontier: Opportunity to directly observe new "low mass" feebly interacting particles

Hermeticity, long lived particles, ...

FCC-ee statistics:				
•	~100 000 Z / second (!)			
	 1 Z / second at LEP 			
•	~ 10 000 W / hour			
	\circ 20 000 W in 5 years at LEP			
•	~ 1 500 Higgs bosons / day			
	$\circ \mathcal{O}(10)$ times more than ILC			
•	\sim 1 500 top quarks / day			

FCC-ee Physics Landscape

Detector Requirements in Brief

Solenoid Magnet

Nikkie Deelen,, FCC Workshop Feb. 2022

2 T "light and thin" Solenoid inside Calorimeter

Property Value Magnetic field in center [T] 2 Free bore diameter [m] 4 Stored energy [MJ] 170 Cold mass [t] 8 Cold mass inner radius [m] 2.2 Cold mass thickness [m] 0.03 Cold mass length [m] 6

H. Ten Kate et al.

Objectives

- **Light**: certainly less than 1 X₀
- Thin: As thin as possible for optimal tracker-tocalorimeter matching
- Self-supporting single layer coil
 High yield strength conductor fully bonded
 Thin Al support cylinder
- Coil composition
 - □ Aluminum (77 vol.%)
 - D NbTi (5 vol.%) / copper (5 vol.%)
 - Glass-resin-dielectric films (13 vol.%)
- Radiation thickness (preliminary studies)
 - □ Cold mass: X₀ ≈ 0.46
 - □ Cryostat (25 mm Al): $X_0 \approx 0.28$
 - □ Total $X_0 \approx 0.75$ achievable
 - Total radial envelope less than 30 cm

Prospects for even lighter and thinner outer shell

A Possible FCC-hh Detector – Reference Design for CDR

- Reference design for an FCC-hh experiment for <u>FCC CDR</u>
- Goal was to demonstrate, that an experiment exploiting the full FCC-hh physics potential is technically feasible
 - Input for Delphes physics simulations
 - Radiation simulations
- However, this is one example experiment, other choices are possible and very likely → A lot of room for other ideas, other concepts and different technologies

FCC-hh Detector - Reference Design for CDR

Forward solenoid adds about 1 unit of η with full lever-arm

Forward solenoid requires additional radiation shield to connect endcap and forward calorimeter