FCC-ee Physics performance and detector requirements

E. Perez (CERN) November 08, 2024

XV Latin American Symposium on High Energy Physics

Detector requirements from the exp. environment and from physics

- Constraints imposed by the machine-detector interface, e.g. :
 - $B(sol.) \le 2T$ at the Z peak , $L^* = 2.2 \text{ m}, \theta > 100 \text{ mrad}$
- Exp. environment at FCC-ee \neq LC
 - E.g. no power pulsing of electronics, more cooling for VXD or less power
 - Specific conditions at the Z peak: large physics event rates (100kHz), small bunch spacing (approx. 20 ns)
- Physics requirements:
 - For √s > about 240 GeV: considered already in ILC / CLIC studies, to be revisited for FCC
 - Z pole running: extremely large statistics !
 - Very small stat errors call for very small systematic uncertainties
 - Specific detector requirements, not studied earlier (LCs are not a Tera-Z factory)
- Up to 4 detectors are considered for FCC-ee. Could be some complementarity w.r.t. the physics reach.

Detector benchmarks : existing / oldish (adapted) proposals

(CLD and IDEA considered in the CDR)

More details [in the next talk !

Silicon Vertex Detector

Main tracker : Silicon (CLD), or gaseous detector - drift chamber (IDEA), TPC?)

Calorimeter: High-granularity Si/W, or dual readout, or noble liquid

Muon system

Current understanding of detector performance and det requirements summarized in the PED chapter of the Feasibility Study mid-term review report. Being updated for the final report, to be sent as input to the ESU process

• Most analyses documented in FCC notes, to become public soon

Most physics analyses use a fast simulation of the response of the detector

baseline chosen: IDEA detector

Variations around this baseline, study the sensitivity of several benchmark analyses or measurements

- e.g.compare different tracker designs (gaseous vs silicon)
- or change parameters in the simulation model, e.g. material budget, single hit resolution of vertex detector, etc

Performance studies in FullSim have also started

A few examples shown here.

- Some emphasis on what is new / not a mere repetition of LEP / LHC
- Some areas where further work is needed are highlighted in red

Vertex detector

Drives: impact parameters; reconstruction of secondary vertices; flavour tagging; measurement of lifetimes

$$\sigma_{d_0} = a \oplus rac{b}{p \sin^{3/2} heta}$$

[IDEA baseline: a \simeq 3 μm]

• Jet flavour tagging

- Distance to beam line
- single hit resolution
- Material budget (MS)
- Beam-pipe transparency
- Benchmark: Uncertainty on Hcc and Hbb couplings. Not much affected by reasonable degradation w.r.t.baseline performance (e.g. material budget).
- Precise reconstruction of displaced vertices
 - Two examples for which better performance than IDEA baseline is desirable :

Meas. of $B \rightarrow K^* \tau \tau$

- Complex analysis !
- Only had tau decays so far

Meas. of Rc using exclusive decays

- $\operatorname{Rc} = \Gamma(Z \rightarrow \operatorname{cc}) / \Gamma(Z \rightarrow \operatorname{had})$
- Exclusive tagger, double-tagged events: high purity, low systematics
- New ! Not possible at LEP because of statistics

Main tracker: track momentum resolution

Full Si tracker (CLD) : in the energy range of interest, resolution is dominated by the multiple scattering

Importance of transparency in the p range of FCC-ee !

Ideally: $\sigma(p) / p \approx rel. BES$

Light drift chamber of IDEA close to this limit.

At 90 degrees:

	IDEA	CLD	
10 GeV	0.6 ‰	2.5 ‰	
50 GeV	1.5 ‰	3 ‰	

Track momentum resolution: examples

Unique to lepton colliders: ZH events tagged by the Z

$$m_{\rm recoil}^2 = (\sqrt{s} - E_{l\bar{l}})^2 - p_{l\bar{l}}^2$$

A fit to the recoil mass distribution allows a meas of:

• $\sigma(ZH)$, independent of the Higgs decay mode

the Higgs mass

Goal: $\Delta(m_H) \sim \Gamma_H \sim 4 \text{ MeV} !$

~ reached with IDEA's drift chamber or with CLD Si tracker after combining with ee channel.

For this use case, both tracker designs meet the reqs.

Dominant systematic uncertainty on the Z width: point-to-point uncertainty on \sqrt{s} With $\delta(\sqrt{s})_{ptp} \sim 10$ keV, syst. uncertainty on Γ_Z would be 5 keV, at the level of the stat. !

Can be controlled in –situ from $\mu\mu$ events (peak position of M $\mu\mu$ at various \sqrt{s}).

- Imposes tight constraints on p resolution and momentum scale stability
- Optimal analysis techniques still to be developed

E.Pere

Gaseous tracker: powerful separation via ionisation measurements, dE/dx or dN/dx TOF measurements at 2m from the IP: fill the gap around 1 GeV

- but TOF alone: pi/K separation at low p only, e.g. 3σ up to 3 (5) GeV with 30 (10) ps resol Compact RICH: design exists, could provide separation in whole p range

Benchmark processes considered:

- Several flavour physics processes
- Higgs to strange coupling
 - Tantalising possibility for a 50%
 measurement of s Yukawa with 10 ab-1
 - Needs excellent K/ π separation up to 40 GeV for rejecting H \rightarrow gg contamination and Z \rightarrow qq
 - Also excellent resolution on visible mass

FCC-ee Higgs group, WIP

Requirements have been set and studied in fast simulation,

- but can we meet them with a real detector?
- we need a fully working Particle-Flow algorithm with integrated PID
- an ML-PF approach would allow to quickly iterate between different detector full simulation implementation

Calorimetry: examples

- Benchmark processes studied for the resolution of hadronic masses: Higgs physics (Hss, Higgs to invisible), one HNL signal
- Photons and electrons: ٠

 e^+

e

- Flavour physics e.g. Bs versus Bd in final states with pi0's or photons
- Recovery of brem photons
- pi0's from tau decays in $Z \rightarrow \tau \tau$, for τ polarisation
- Axion-like particles

Long-lived ALPs: Pointing photons?

Still WIP,

- Precise photon angle determination: should allow an in-situ determination of the acceptance for ee $\rightarrow \gamma \gamma$ events (lumi to 10⁻⁵)
 - New method, exploiting kinematic constraints and crossing angle, full potential yet to be established !

Nov 8, 2024

Muon detector

- Main objective: identify muons with high efficiency + tail-catcher for had showers
- Standalone measurement of track's momentum
 - Useful to identify pions that decay in flight and reduce the pion contamination
 - Also relevant for LLPs that decay outside of the tracker volume
 - Requirements on standalone resolution need to be quantified.

- TOF measurements
 - For PID: see earlier, e.g. at 2m from the IP, in dedicated layer or in SiW Ecal
 - Determination of mass and lifetime of new massive particles. Example: HNL: need resolution < 50 ps
- Time measurements very close to the IP
 - Allows a determination of the "event t0"
 - Robust reference for the TOF measurements
 - Width of t0 distribution -> independent determination of the BES
 - Exploit correlation between t0 and longitudinal position (within the bunch) of the interacting electrons
 - Achieving precise timing measurements in the innermost layer of the VXD, without compromising heavily the material budget, will probably be a challenge.
- Time measurements in the calorimeters
 - Handles to exploit the shower development in space and time
 - Possible benefit remains to be studied in detail
 - DR calo: precision timing -> longitudinal segmentation

Several analyses have been developed in the past years, from which some requirements on the detectors can be inferred

- comparison of gaseous vs silicon detector
- importance of low mass, high granularity vertex detector
- charged hadron PID is not only needed for flavour physics !

More robust statements on the requirements on calorimetry require full simulation studies with a realistic particle-flow reconstruction.

Several other areas where further work is needed, e.g.

- precision with which basic EW observables can be measured
- required precision on alignments and other fiducial markers
- muon detector, needs for precise timing

- ...

Additional material

• FCC Conceptual Design Reports

- Vol. 1 Physics; Vol. 2 FCC-ee; Vol. 3 FCC-hh : 1338 authors
 - Preprints (Jan. 2019) on http://fcc-cdr.web.cern.ch
 - Published in EPJ C (Vol. 1) and EPJ ST (Vol. 2 & 3)
- Symposia and workshops, with many further details
 - Public presentation of the CDR, 4-5 March 2019: https://indico.cern.ch/event/789349/
 - Physics workshops (Jan. 20, Nov. 20), FCC Week 2019: <u>https://indico.cern.ch/category/5225/</u>
- Other useful documentation, to extend and deepen knowledge
 - FCC-ee: Your questions answered <u>https://arxiv.org/abs/1906.02693</u>
 - Circular vs Linear colliders: Another story of complementarity <u>https://arxiv.org/abs/1912.11871</u>
 - Theory calculations for FCC-ee <u>https://arxiv.org/abs/1809.01830</u> & <u>https://arxiv.org/abs/1905.05078</u>
 - Polarization and centre-of-mass energy calibration at FCC-ee https://arxiv.org/abs/1909.12245

P. Janot

ECFA Plenary Meeting 19 Nov 2021

Some useful reading beyond the CDR

EPJ+ special issue "A future Higgs and EW Factory: Challenges towards discovery"

2	Introduction (2 essays)	3	ſ	All 34 references in this Overleaf document:			
	2.1 Physics landscape after the Higgs discovery [1]	3		https://www.overleaf.com/read/xcssxqvhtrgt			
	2.2 Building on the Shoulders of Giants [2]	3	L	https://www.ovenear.com/read/xccoxqyntrgt			
3	Part I: The next big leap – New Accelerator technologies to reach the precision		4.10 From physi	ics benchmarks to detector requirements [18]	. 8		
	Prontier [3] (6 essays)	4	4.11 Calorimetry	y at FCC-ee [19] Detector require	ments		
	3.1 FCC-ee: the synthesis of a long history of $\mathbf{e}^+\mathbf{e}^-$ circular colliders [4]	4	4.12 Tracking a	nd vertex detectors at FCC-ee [20]			
	3.2 RF system challenges	4	4.13 Muon detec	ction at FCC-ee [21] & .possible.solu	tions		
	3.3 How to increase the physics output per MW.h?	4	4.14 Challenges	for FCC-ee Luminosity Monitor Design [22]	• • 9		
/	3.4 IR challenges and the Machine Detector Interface at FCC-ee [5]	4	4.15 Particle Ide	entification at FCC-ee [23]	10		
	3.5 The challenges of beam polarization and keV-scale center-of-mass energy calibration [6]	4 5	Part III: Theo	pretical challenges at the precision frontier 124 (7 essays)	10		
	3.6 The challenge of monochromatization [7]	4	5.1 Orarall por	spective and introduction	10		
4	Part II: Physics Opportunities and challenges towards discovery [8] (15 escays)	4	5.2 Theory cha	illenges for electroweak and Higgs calculations [25]	. 10		
-1	4.1 Overview new physics opportunities greate new challenges [0]	5	5.3 Theory cha	llenges for OCD calculations	11		
	4.1 Ocerview, new physics opportunities create new channenges [9]	5	5.4 New Physic	cs at the FCC-ee: Indirect discovery potential [26]	$\begin{pmatrix} & 11 \\ & 11 \end{pmatrix}$		
	4.2 Higgs and top chantenges at FCC-ee [10]	5	5.5 Direct disc	overy of new light states [27]	jes 1		
/	4.4 Heavy sweet challenges at ECC as [12]	teh	5.6 Theoretical	challenges for flavour physics [28]	11		
/	4.4 Heavy quark challenges at FCC-ee [12]	c	5.7 Challenges	for tau physics at the TeraZ [29]			
	4.5 The tau challenges at FCC-ee [13] statistical precis	on	on chancinger				
	4.6 Hunting for rare processes and long lived particles at FCC-ee [14]	⁶ 6	Part IV: Softw	vare Dev. & Computational challenges (4 essays)	11		
/	4.7 The W mass and width challenge at FCC-ee [15]	7	6.1 Key4hep, a	framework for future HEP experiments and its use in FCC	11		
	4.8 A special Higgs challenge: Measuring the electron Yukawa coupling via s-channel	7	6.2 Offline com	nputing resources and approaches for sustainable computing $\ . \ . \ .$	11		
	10 A gravial Higgs challenge. Maggining the maggined energy section with altimate	'	6.3 Accelerator	related codes and interplay with FCCSW	11		
	4.9 A special riggs challenge: Measuring the mass and cross section with untimate precision [17]	7	6.4 Online com	nputing challenges: detector & readout requirements [30]	12		
Software and computing							
	P. Janot ECFA Plena	ry Me	eting	challenges	8		
	19 Nov	2021			0		