

Measurements of the Higgs boson with the ATLAS experiment

Gregory Penn,

Yale University

On behalf of the ATLAS Collaboration

So much to talk about!

How to find a Higgs at the Large Hadron Collider

Higgs Property Measurements

Ŵ/Z

W/Z

g ,00000

g ᅇ

t/b/c

t/b/c

• Input to EW fits: requires precision!

g ඟ

W/Z

• Measured in Run 2 H $\rightarrow \gamma \gamma$ and H $\rightarrow ZZ^* \rightarrow 4l$

t/b

t/b 9

• Requires deep understanding of detector response to γ , e, μ

W/Z

W/Z

• Combined: $m_H = 125.11 \pm 0.09$ (stat) ± 0.06 (syst) GeV

t/b/τ

 $\nu |Z$

 $H \rightarrow \gamma \gamma$ Phys.Lett.B 847 (2023)

b/c

b/c

 τ/μ

τ/u

```
Combination

<u>Phys. Rev. Lett. 131</u>

(2023) 251802
```


- SM Prediction $\Gamma_{\rm H}^{\rm SM}$ = 4.1 MeV too small to measure directly with good precision
 - Indirect measurement requires cross section of $H^* \rightarrow ZZ \rightarrow 4l$, 2l2v
- Signal is a dip in continuous ZZ distribution
- NN observable in $ZZ \rightarrow 4l$ improves sensitivity to off-shell Higgs signal

Higgs Spin and CP Structure

- Higgs spin and Charge-Parity (CP) structure is known to be $J^{CP} = 0^{++}$
- The CP property of its couplings can still vary
- CP violation is a necessary ingredient to explain baryon asymmetry
 - Motivates thorough investigation into CP nature of Higgs sector!

CP-odd couplings can enter at operator dimension = 4 for fermions (Parameterized by α) CP-odd couplings can enter at operator dimension = 6 for bosons (Parameterized by Wilson coefficients)

$$\mathcal{L}_{HFF} = -\frac{m_F}{v} \kappa_F (\cos \alpha \, \bar{\psi} \psi + \sin \alpha \, \bar{\psi} i \gamma_5 \psi) H$$

	CP-odd		
Operator $O_i^{(d=6)}$	$H^{\dagger}H ilde{W}^{n}_{\mu u}W^{n\mu u}$	$H^\dagger H ilde{B}_{\mu u} B^{\mu u}$	$H^{\dagger} au^{n}H ilde{W}^{n}_{\mu u}B^{\mu u}$
Wilson coefficient	$c_{H ilde W}$	$c_{H ilde{B}}$	c _{HŴB}

Higgs CP Structure (Fermions)

<u>Eur. Phys. J. C 83,</u> <u>no.7, 563 (2023)</u>

• $H \rightarrow \tau \tau$: CP-sensitive acoptanarity angle (φ_{CP}^*)

$$d\Gamma_{H\to\tau^+\tau^-} \approx 1 - b(E_+)b(E_-)\frac{\pi^2}{16}\cos(\varphi_{CP}^* - 2\phi_{\tau})$$

• Requires accurate tagging of tau decay mode (Boosted Decision Tree)

- $H \rightarrow \gamma \gamma$: Measurement targeting Higgs production w/ vector bosons
- "Optimal Observable": $OO = 2Re(\mathcal{M}_{SM}^*\mathcal{M}_{CP-odd})/|\mathcal{M}_{SM}|^2$
 - Calculated from 4-vectors of Higgs candidate and di-jet system
- Limits on couplings of dimension-6 operators in an effective field theory formalism
 - HISZ basis: $d \sim: 95\%$ CI = [-0.034 + 0.071]
 - Warsaw basis: $c_{HW\sim}$: 95% CI = [-0.55, +1.07]

Higgs Signal Strengths / Cross Sections

Higgs Cross Sections / Signal Strengths

ATLAS Run 2 Higgs Report: arXiv:2404.05498

12

- Combine results for comprehensive picture of Higgs cross sections and branching ratios
- " κ framework": effective coupling strength modifiers

Combinations: Simplified Template Cross Sections

g 10000

t/b

t/b 9

 Look deeper at Higgs interactions in phase space!

W/Z

- Simplified Template Cross Section (STXS) optimizes:
 - Sensitivity to BSM contributions

Ŵ/Z

W/Z

g ,00000

g 🕨

t/b/c

t/b/c

- Experimental sensitivity
- Interest from theory community

ATLAS Run 2 Higgs Report: <u>arXiv:2404.05498</u>

- Comphrehensive measurement in STXS bins
 - Most precise single-channel VBF signal strength: $0.93^{+0.17}_{-0.15}$
- Differential measurement targeting Higgs production
 - Most stringent constraint of CP-odd SMEFT coefficient:
 - $c_{HW} \approx 95\%$ CI = [-0.31, +0.88]

Rare Decays: $H \rightarrow Z\gamma$

- Branching ratio: $\sim 1.5 \times 10^{-3}$
- ATLAS Run 2 signal yield: $2.0^{+1.0}_{-0.9}$
- Combine with CMS Run 2 signal yield $(2.2^{+0.7}_{-0.7})$ for **3**. **4** σ significance!

Run 3 Measurements: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^* \rightarrow 4l$ Eur. Phys. J. C 84 (2024) 78

- New dataset incoming make sure the Higgs is still there!
- Early measurements already innovating on methods
 - Machine learning method for generation of large-statistic background template

Summary

- Plenty of work done by ATLAS to inspect the nature of the Higgs
 - Mass, Spin / CP, Width
 - Comprehensive study of production and decay cross sections
- Interpretations are becoming increasingly sophisticated:
 - Simplified Template Cross Section, Effective Field Theories
- Run 3 doubles the dataset increased ability to measure rare Higgs production and decay modes, measurements becoming more and more differential
- Early Run 3 measurements promise an invigorating Run 3 program!
- Keep an eye out for new discoveries: $H \rightarrow Z\gamma$!