ATLAS searches in the Higgs sector

XV Latin American Symposium on High Energy Physics <u>4 - 8 November 2024</u>

Sid (Luke) Baines (QMUL) on behalf of ATLAS Higgs, Multi-Boson and SUSY searches working group

Overview & some 'glossary'

- Strong motivation for extended Higgs sector
 - Baryogenesis, dark matter, strong-CP problem, ...
- Talk covers recent public results from ATLAS searches
 - $H \rightarrow \gamma \gamma$ low mass
- Brand new! $\begin{cases} \bullet S \to Z_d Z_d \to 4l \\ \bullet H^{\pm} \to W^{\pm}h \to (l\nu/qq)bb \end{cases}$
 - $t \rightarrow H^+b \rightarrow cs b$
 - $H \rightarrow aa \rightarrow bb\tau\tau$
 - *HH* combination
 - $X \to HS \to \gamma\gamma$ + lepton(s)

*HH combination has some channels with $\mathcal{L}_{int} < 140 \text{fb}^{-1}$ due to trigger

All are full Run 2*, $\mathcal{L}_{int} = 140 \text{fb}^{-1}$, $\sqrt{s} = 13 \text{ TeV}$

Glossary of reappearing acronyms

- Boosted Decision Tree BDT:
- MC: Monte Carlo (simulations)
- Standard Model SM:
- Confidence limit (on a cross-section) CL:

 $H \rightarrow \gamma \gamma$ low mass Motivation

- Previous bumps ~95GeV
 - Small (1 σ) bump at ATLAS using ½ Run 2 data
 - Followed by larger 2.9 σ bump at CMS (full Run 2)
- Updated ATLAS search using full Run 2
- Both model-<u>in</u>dependent & modeldependent search for narrow resonances
- Covers range: 66 110 GeV

2.9 σ local @ 95.4GeV with CMS full Run 2 [CMS-HIG-20-002] $H \rightarrow \gamma \gamma$ low mass Strategy

- Event selection:
 - Di-photon trigger with $p_T > 20 22$ GeV + isolation requirement
 - Mass-dependent E_T cut to avoid trigger sculpting
- Backgrounds: 'continuum' $\gamma\gamma / \gamma$ +jet / jets, $Z \rightarrow ee$ photon-fakes
 - Model continuum background with double-sided crystal ball (MC/data driven) [fig. 1-2]
- Apply BDT to reject electron-fakes [fig. 3]
- For model-dependent, second BDT [fig. 4] looks for Higgs-like resonance (using SMcouplings)

$H \rightarrow \gamma \gamma$ low mass Results

• No confirmation of previous excesses

95% confidence limits on cross section times branching ratio

- New scalar S decaying into new spin-1 bosons Z_d
 - $m_{Z_d} \in [15, 300] \text{GeV}$
 - $m_{S} \in [30, 115]$ GeV **or** [130, 800]GeV
- Event selection: 4-leptons
 - Includes requirements on P_t , angular separation, pairwise-combined mass values, and more
- Backgrounds:
 - Dominant: non-resonant $ZZ^* \rightarrow 4l$ modelled using MC
 - Additional: $t\overline{t}$, Z+jets estimated using data-driven
- Split into signal regions
 - SR1: $m_{4l} < 115 {\rm GeV}$
 - SR2: $m_{4l} > 130 {\rm GeV}$
- Fit $\langle m_{ll} \rangle$, the average dilepton mass

Sid Baines

$S \rightarrow Z_d Z_d \rightarrow 4l$ Results

- No significant excess observed
- 95% upper CL on σ \times branching ratio set for range of masses

SR1

SR2

 $H^{\pm} \rightarrow W^{\pm}h \rightarrow (l\nu/qq)bb$ Motivation & strategy

- N2HDM, 3HDM, Georgi-Machacek model
 - $H^{\pm} \rightarrow W^{\pm}h$ decay mode becomes important
- Single-lepton, multi-jet (including *b*-jets) final state
- Backgrounds: $t\overline{t}$, W+jets, Z+jets
 - Modelled using MC (data-driven corrections to $t\bar{t}$)
- Split based on $h \rightarrow bb$: resolved or merged

Resolved

- *h* expected as 2 *b*-jets
- Use m_t to split *lvbb* vs. *qqbb*
- Use BDT to reconstruct event •
- Use (same) BDT reconstruction score to define regions

Merged

- *h* expected as 1 large-R
 - 'boosted $h \rightarrow bb$ '-tagged jet
 - Split lvbb vs. qqbb by
 - number/masses of large-R jets
- Reconstruct event by hand
- Train NN to define regions
- Fit on $m_{W^{\pm}h}$ (30 channels!)
 - Combine ČLs: resolved $m_{H^\pm} \leq 900 {\rm GeV}$, merged $m_{H^\pm} \geq 900 {\rm GeV}$

Representative Feynman diagram of signal

Reconstructed top mass m_t for resolved channel ${}^{_{8}}$

$H^{\pm} \rightarrow W^{\pm}h \rightarrow (l\nu/qq)bb$ Results

• No significant excess observed

95% confidence limits on cross section times branching ratio

Post-fit $m_{W^{\pm}h}$ distribution for example resolved signal region

Post-fit $m_{W^{\pm}h}$ distribution for example merged signal region

- BSM Higgs extensions (eg. 2HDM with aneta < 1)
- Large branching ratio at H^{\pm} masses below m_t
 - + Covers 60 GeV $< m_{H^\pm} <$ 168 GeV
- Previous CMS result* with less data & smaller mass range
- Main background: $t\bar{t}$
- Strategy:
 - Single lepton + multi-jet final-state event selection
 - Pseudo-continuous b/c jet-tagging using DL1r tagger
 - Reconstruct $t\overline{t}$ system fully
 - Background modelling: MC simulation + data-driven corrections
 - Use Boosted Decision Tree (BDT) to classify events
 - Binned maximum-likelihood fit on BDT score

Branching ratios of charged Higgs

Phys Rev D 94 (2016) 115032

* [arXiv:2005.08900]

$t \to H^{\pm}b \to cs b$ Results

• No significant excess found

95% Confidence limits on branching ratio [assumes B(t \rightarrow Wb) + B(t \rightarrow H±(\rightarrow cs)b) = 1.0]

- Decay of SM 125 GeV Higgs boson into 2 light pseudoscalars \boldsymbol{a}
 - 12 GeV $< m_a < 62$ GeV
- Backgrounds: τ_{had} -fakes, e/μ -fakes, tt+jets, Z+jets
- Event selection:
 - e/μ ($p_T > 27 \text{GeV}$) or $e\mu$ triggers
 - small-radius b jet(s) or large-radius B jet
 - *b*-jet originates from 1 *b*-hadron, *B*-jet originates from $a \rightarrow bb$ pair
- Dedicated *B*-tagger used since others struggle for low-mass parents [see <u>ATL-PHYS-PUB-2022-042</u>]
- Parametrised neural network (pNN) trained using heavyflavour jet + tau-lepton variables

Feynman diagram of signal process

Event selection categories

$H \rightarrow aa \rightarrow bb\tau\tau$ Results

• No significant excess found

Parametrised neural network output for $e\mu - 1b$ category

Parametrised neural network output for $\mu_{\tau_{\rm had}} - 2b$ category

95% confidence limits

SILAFAE XV 08/11/2024

Below: SM vector boson fusion production of Higgs pairs

 κ_V

 κ_V

Above: SM gluon-gluon fusion production of Higgs pairs

 $\cdot \cdot H$

- H

...in SM

• Di-Higgs of interest...

HH combination

Motivation

g uninequely g

g g

 κ_{2V}

H

arXiv: 2407.07546 Accepted by: PhysRevLett DOI: 133.101801

...and beyond

Non-SM gluon-gluon fusion production of Higgs pairs

Sid Baines

 κ_V

- Combined results from several decays:
 - $b\overline{b}b\overline{b}$

- now using both resolved & merged (ie boosted) topologies
- $b\overline{b}\tau^+\tau^-$ better classification, higher stats, better background modelling
- $b\overline{b}\gamma\gamma$

- better classification
- multilepton
- $b\overline{b}ll + E_T^{miss}$
- Fit to different variables per decay channel
- Create 'global likelihood' as product of individual channel likelihoods
 - Check overlaps & uncertainty correlations between channels
- Signal strength μHH defined as:
 - ratio of measured inclusive ggF and VBF HH production cross section to the SM prediction

HH combination Results

95% CL upper limits on the signal strength μHH

Observe 17% improvement in limits from previous analysis [arXiv: 2211.01216]:

- 13% from improvements to existing channels
- 4% from addition of multilepton & $b\overline{b}ll + E_T^{miss}$

- Search for $X \rightarrow Sh$ using a new final state
 - $S \rightarrow W^{\pm}W^{\mp}$ or ZZ
 - $h \rightarrow \gamma \gamma$
- Mass range
 - $m_X \in [300, 1000]$ GeV
 - *m_S* ∈ [170, 500]GeV
- Event selection: di-photon + 1 or 2 leptons
- Background & modelling:
 - **Resonant SM-Higgs uses MC-only modelling**
 - Continuum ($\gamma\gamma$ +jets, $V+\gamma\gamma$, $t\bar{t}\gamma\gamma$) uses MC + data-driven
- Define 6 signal regions
 - $1l + 2l (W^{\pm}W^{\mp})$ use BDTs
 - Each split into loose & tight regions
 - $2l(e\mu)$ and 2l(ZZ) are cut-based
- Fit to $m_{\gamma\gamma}$

 $p_{T_{\gamma\gamma}}$ distribution for the 2*l* $(W^{\pm}W^{\mp})$ region

region

17

 $X \rightarrow HS \rightarrow \gamma\gamma + \text{lepton(s)}$ Results

- No significant excess observed
- 95% Upper confidence limits set up to $m_X = 1$ TeV, $m_S = 500$ GeV
 - Including with SM-like branching ratio of S [see figure] as well as exclusively W/Z
 - With $\mathfrak{B}(S \to WW) = 100\%$: $\sigma_{obs} \in [91, 470] \mathrm{fb}^{-1}$
 - With $\mathfrak{B}(S \to ZZ) = 100\%$: $\sigma_{obs} \in [360, 1530] \text{fb}^{-1}$

 $\sigma_{\exp} \in [120, 610] \text{fb}^{-1}$ $\sigma_{\exp} \in [510, 2160] \text{fb}^{-1}$

Looking forward

- Lots of excellent analyses completed
 - Thanks to all collaborators!
 - Limit improvements and 'firsts' in several important decay channels
 - No significant excesses
- More Run 2 analyses (hopefully) soon to be published
- Also lots of exciting Run 3 analyses underway \odot