

ICARUS at the Short-Baseline Neutrino program: First Results

Guadalupe Moreno Granados

Center for Neutrino Physics, Virginia Tech *On behalf of the ICARUS collaboration*

XV Latin American Symposium on High Energy Physics (SILAFAE) November 8th, 2024

Outline

- The Sterile Neutrino Puzzle
- The SBN Program
- The ICARUS Detector
- ICARUS Physics Program
- Summary and Future

THE STERILE V PUZZLE

See Pedro Ochoa's talk!

Guadalupe Moreno

Though the 3vSM model matches well many experiments, some anomalies have been observed in neutrino experiments at short baseline hinting to a new sterile neutrino flavor at $\Delta m_{new}^2 \sim 1 \text{ eV}^2$:

- Accelerator Experiments
 - → LSND: Observed excess of $\overline{v_e}$ events
 - MiniBooNE: Electron-like excess observed in both v and v modes.

Though the 3vSM model matches well many experiments, some anomalies have been observed in neutrino experiments at short baseline hinting to a new sterile neutrino flavor at $\Delta m^2_{new} \sim 1 \text{ eV}^2$:

Guadalupe Moreno

Several experiments at reactors and accelerators, including the recent MicroBooNE result (arXiv:2210.10216), have been studied the 'neutrino anomalies.'

However, there remains a *clear tension between appearance and disappearance* experiments, *which differ in both the neutrino energy ranges they explore and the detection techniques they use*.

Several experiments at reactors and accelerators, including the recent MicroBooNE result (arXiv:2210.10216), have been studied the 'neutrino anomalies.'

However, there remains a *clear tension between appearance and disappearance* experiments, *which differ in both the neutrino energy ranges they explore and the detection techniques they use*.

Untangling the current experimental scenario requires:

- *Measure both appearance and disappearance channels in the same experiment*, using a detector that can precisely identify neutrinos and reject background.
- *Compare Far and Near detector neutrino spectra* to control systematic uncertainties.

Guadalupe Moreno

THE SBN PROGRAM

800

arXiv:1903.04608

at

Guadalupe Moreno

SILAFAE 2024

800

arXiv:1903.04608

at

The **BNB** is a well-characterized v_{μ} ($\overline{v_{\mu}}$) - beam, with minimal v_e contamination.

The **BNB** is a well-characterized v_{μ} ($\overline{v_{\mu}}$) - beam, with minimal v_e contamination.

A **combined analysis** of events collected by **Far Detector** and Near Detector over 3 years (6.6×10²⁰ POT) will allow:

- 5 σ coverage of the parameter space *relevant* to the accelerator anomaly
- Prove of the parameter space associated with reactor and radiochemical anomalies

A *unique capability to simultaneously study both v appearance and disappearance* sensitivities.

Guadalupe Moreno

Exclusive ICARUS Physics Program

NuMI Flux

Guadalupe Moreno

Exclusive ICARUS Physics Program

Before starting joint analysis with the Near Detector, *ICARUS is pursuing its own physics program*, *which includes*:

- Searching for v_{μ} *disappearance using the BNB beam*, followed by searches for v_e disappearance with the off-axis NuMI beam.
- Measuring *v*-*Ar cross sections* with hight statistics (*332k v_μ CC and 17k v_e CC interactions* in 6×10²⁰ POT) and improving reconstruction and identification techniques *with the NuMI beam*, focusing on the energy *range relevant to DUNE*.
- Searching for sub-GeV Beyond the Standard Model (*BSM*) *physics using the NuMI beam*.

Guadalupe Moreno

THE ICARUS DETECTOR

The ICARUS Detector

The first *LAr TPC* was proposed by C. Rubbia in 1977.

These detectors *are high-granularity*, *uniform*, *and self-triggering*, *with 3D imaging and calorimetric* capabilities, making them ideal for neutrino physics.

ICARUS operated at LNGS and refurbished at CERN

The ICARUS Detector

The first *LAr TPC* was proposed by C. Rubbia in 1977.

These detectors *are high-granularity*, *uniform*, *and self-triggering*, *with 3D imaging and calorimetric* capabilities, making them ideal for neutrino physics.

How LArTPCs work

- The *v*-Ar interactions produce tracks, with ions and photons along those.
- *Photons propagate inside the detector* [the scintillation light is collected by the photomultiplier tubes (PMTs) for precise event timing and event calorimetry].
- *The ionized electrons will slowly drift towards the anode* by an applied electric field.
- *The ionized electrons produce induction signals* as they pass the first two wire planes and are collected on the last wire plane.

SILAFAE 2024

17

ICARUS operated at LNGS and refurbished at CERN

The ICARUS Detector

The first *LAr TPC* was proposed by C. Rubbia in 1977.

These detectors *are high-granularity*, *uniform*, *and self-triggering*, *with 3D imaging and calorimetric* capabilities, making them ideal for neutrino physics.

ICARUS operated at LNGS and refurbished at CERN

The ICARUS Detector

- *2 identical cryostats* with 2 TPCs per cryo with central cathode.
- *500 V/cm Ē field* in 1.5 m drift lengths.
- *3 readout wire planes per anode*, oriented at 0° and ±60° w.r.t. horizontal.

The ICARUS Detector Subsystems

Time Projection Chambers (TPC)

• ~54k channels at different orientations and 3 mm pitch.

Photon Detection System (PDS)

- 360 TPB-coated PMTs to detect scintillation light.
- Used for event timing and triggering.

Cosmic Ray Tagger (CRT)

- Nearly 4π coverage with scintillator panels and SiPM readout for cosmic tagging.
- Shielded by ~2.85 m thick concrete layer for external γ/n suppression.

Eur. Phys. J. C 83, 467 (2023)

Cathode Field cage PMTs

Overburden

Guadalupe Moreno

ICARUS Data Collection

- ICARUS began collecting data for physics on June 9th, 2022, with the TPC, PMT, and CRT systems fully operational.
- The cryogenic and purification systems performed smoothly*, *maintaining a stable free electron lifetime of 7-8 ms*, enabling nearly full track detection efficiency over the 1.5 m drift distance (~1 ms).

ICARUS Electron Lifetime

ICARUS Data Collection

- Light signal registered simultaneously by
 4 PMT pairs inside a 6 m longitudinal slice in coincidence with BNB (1.6 µs), NuMI (9.5 µs) beam spills.
- > **90% efficiency** for E_{dep} >200 MeV

Collected Protons on Target (POT)	BNB (FHC*) positive focusing	NuMI (FHC*) positive focusing	NuMI (RHC*) negative focusing
RUN-1 (Jun 9 th – Jul 10 th , 2022)	0.41×10^{20}	0.68×10^{20}	—
RUN-2 (Dec 20 th , 2022 – Jul 14 th , 2023)	2.05×10^{20}	2.74×10^{20}	—
RUN-3** (Mar 15 th – Jul 12 th , 2024)	1.36×10^{20}	—	2.82×10^{20}
TOTAL	3.82×10 ²⁰	3.42×10 ²⁰	2.82×10 ²⁰

* FHC: Forward Horn Current (neutrino) and RHC: Reverse Horn Current (antineutrino). ** Reduced exposure for RUN-3 due to the prolonged accelerator shutdown.

Guadalupe Moreno

ICARUS Detector Calibration

Detector response is calibrated using cosmic muons and protons from v interactions, with a new angulardependent ellipsoidal recombination model (*EMB*).

Reconstruction has improved with new processing that accounts for shared charge between multiple wires.

arXiv:2407.12969

Guadalupe Moreno

50

60

Angle $\phi[\circ]$ between track and drift electric field

ICARUS

Preliminary

40

1.000

30

Residual Range [cm]

ICARUS Detector Validation

Deposited energy is used to validate calibration and improve calorimetric reconstruction.

• Difference between calorimetric energy reconstruction and the range measurement of the proton and stopping muon energy.

ICARUS Detector Validation

Deposited energy is used to validate calibration and improve calorimetric reconstruction.

- Difference between calorimetric energy reconstruction and the range measurement of the proton and stopping muon energy.
- π^0 from neutrino interactions, achieving ~10% resolution on $m_{\gamma\gamma}$

• The difference between automatic and visually reconstructed vertex positions for ~500 visually selected v_{μ} CC candidates shows a resolution of a few millimeters.

Guadalupe Moreno

ICARUS PHYSICS PROGRAM

v_{μ} Event Selection for disappearance with BNB

Study of Fully Contained vµ CC Events (1µ+ Np)

- Event Selection Criteria
 - TPC track linked with PMT light and no CRT signal within beam spill window.
 - Muon track with length L_{μ} >50 cm.
 - At least 1 proton with L_p>2.3 cm (corresponding to E_k>50 MeV).
 - ➤ Particles correctly identified by PID tool (based on dE/dx).
 - Events contain fully contained particles (no additional π or γ).

- Pandora Pattern Recognition Algorithm
- → Machine Learning-based SPINE
- Background Rejection & Validation
 - ✤ Cosmic backgrounds are kept below 1%.
 - Event kinematics validated through visual studies and range measurements.

Guadalupe Moreno

1µNp Analysis from BNB

 10% of RUN-2 data analyzed; 20x more data available, showing Data-MC agreement within systematics.

SILAFAE 2024

Use two independent reconstruction approaches:

- *Pandora* pattern recognition algorithm
- *SPINE*, a Machine Learning reconstruction

	Pandora	SPINE
Efficiency	50 %	75 %
Purity	80 %	80 %
РОТ	$1.93 \ge 10^{19}$	1.92 x 10 ¹⁹
Total Events*	34 k	47 k

Guadalupe Moreno

^{*} Using the Run 1, 2, and 3 POT

1µNp Analysis from BNB

 10% of RUN-2 data analyzed; 20x more data available, showing Data-MC agreement within systematics.

SILAFAE 2024

Use two independent reconstruction approaches:

- *Pandora* pattern recognition algorithm
- *SPINE*, a Machine Learning reconstruction

	Pandora	SPINE
Efficiency	50 %	75 %
Purity	80 %	80 %
РОТ	$1.93 \ge 10^{19}$	1.92 x 10 ¹⁹
Total Events*	34 k	47 k

Ready for the next steps:

- *Enlarge the control sample* to confirm analysis robustness.
- Unblind the full dataset.
- *Perform an oscillation fit* using ICARUS data only.

* Using the Run 1, 2, and 3 POT

Guadalupe Moreno

v-Ar Interactions from NuMI

- ICARUS has a large NuMI dataset for v-Ar cross-section measurements:
 - > 332k v_{μ} CC and 17k v_e CC interactions in 6×10²⁰ POT.
- Currently *available data:* ~3.42×10²⁰ POT.

v-Ar Interactions from NuMI

- ICARUS has a large NuMI dataset for v-Ar cross-section measurements:
 - **332k** v_{μ} *CC* and 17k v_e *CC* interactions in 6×10²⁰ POT.
- Currently *available data:* ~3.42×10²⁰ POT.
- *NuMI's neutrino energy* spectrum ranges from a few hundred MeV to a few GeV, *covering the energy range relevant for the DUNE* experiment.

expected probability of oscillation in DUNE

Guadalupe Moreno

1µNp0π Analysis from NuMI

First Analysis Target, 1μNp0π Events

Signal Definition

- → 1 muon with p_{μ} >0.226 GeV/c
- → At least 1proton with 0.4<p_p<1 GeV/c
- No pions (π^{\pm} or π^{0}) in final state

• Systematics & Modeling

- Includes neutrino flux, interaction model, and detector systematics.
- Angular and transverse kinematic observables are used to capture initial and final state effects.

1µNp0π Analysis from NuMI

First Analysis Target, 1μ*Np*0*π Events*

- Signal Definition
 - 1 muon with p_{μ} >0.226 GeV/c
 - At least 1proton with $0.4 < p_p < 1 \text{ GeV/c}$
 - No pions (π^{\pm} or π^{0}) in final state

• Systematics & Modeling

- Includes neutrino flux, interaction model, and detector systematics.
- Angular and transverse kinematic observables are used to capture initial and final state effects.
- *Major Backgrounds* (Events with undetected or misidentified pions)
 - Control sample with π[±] candidates selected to characterize this background (requires secondary μ-like track).
 - → Data/MC shows good agreement within ~15%.

Guadalupe Moreno

BSM Physics from NuMI

BSM Searches with NuMI Data

Models involving dark particles coupling to Standard Model particles through Scalar Portal.

- *Higgs Portal Scalar (HPS):* Scalar dark particles mix with the Higgs boson.
- *Heavy QCD Axion (ALP):* Pseudoscalar particles mix with pseudoscalar mesons.

BSM Physics from NuMI

BSM Searches with NuMI Data

Models involving dark particles coupling to Standard Model particles through Scalar Portal.

- *Higgs Portal Scalar (HPS):* Scalar dark particles mix with the Higgs boson.
- Heavy QCD Axion (ALP): Pseudoscalar particles mix with pseudoscalar mesons.

Scalar Decays in $\mu+\mu$ - with Run2 NuMI, Results:

- 9 candidate events found, matching MC background expectation of 8 events (from v_{μ} CC coherent pion production).
- Results show *no significant new physics signal* (0.19 σ). •

BSM Physics from NuMI

BSM Searches with NuMI Data

Models involving dark particles coupling to Standard Model particles through Scalar Portal.

- *Higgs Portal Scalar (HPS):* Scalar dark particles mix with the Higgs boson.
- *Heavy QCD Axion (ALP):* Pseudoscalar particles mix with pseudoscalar mesons.

Scalar Decays in μ + μ - *with Run2 NuMI, Results:*

- 9 candidate events found, matching MC background expectation of 8 events (from v_{μ} CC coherent pion production).
- Results show *no significant new physics signal* (0.19 σ).

SILAFAE 2024

Heavy Axion Exclusion **ICARUS** Limits - Exp. Med. Exp. $\pm 1\sigma$ NA62 - CHARM Observed uBooNE 10^{-3} 1/f_a [Gev⁻¹] ____ 10^{-5} Co-dominance: $c_1 = c_2 = c_3 = 1$, Running c_{μ} 225 250 275 300 325 350 M_a [MeV]

Guadalupe Moreno

Submitted to publication!

arXiv:2411.02727

SUMMARY AND FUTURE

Summary

- ICARUS has been operating smoothly in physics mode since June 2022.
- The detector response is calibrated with cosmic muons and neutrino-induced protons, with TPC signals and main detector parameters accurately characterized and modeled in simulation.
- Before the start of the joint operation within SBN, ICARUS is on the way to first physics results:
 - v_{μ} Disappearance Studies with BNB: Ready to expand control samples.
 - → v-Ar Cross Section Measurements using NuMI data.
 - Sub-GeV Dark Matter Search with NuMI beam: *Analysis of scalar decays to* $\mu^+\mu^-$ *completed*.

Summary

Exciting prospects ahead as we gear up for the SBN joint analysis!

Guadalupe Moreno

ICARUS: Abratenko, P. et al. Eur. Phys. J. C 83, 467 (2023)

LAr TPCs Why LAr TPCs?

- The *v*-Ar interactions produce tracks, with ions and photons along those.
- **Photons propagate inside the detector** [the scintillation light is collected by the photomultiplier tubes (PMTs) for precise event timing and event calorimetry].
- *The ionized electrons will slowly drift towards the anode* by an applied electric field.
- *The ionized electrons produce induction signals* as they pass the first two wire planes and are collected on the last wire plane.

LAr TPC detectors, provide **full 3D imaging, precise calorimetric energy reconstruction**, and efficient **particle identification**. The detailed images of particle trajectories provide **significant information about final states**. The **high spatial resolution** allows for tracking. Thus, **using the LArTPC technology we will be able to study** v_{μ} and v_{e} with high precision.

Guadalupe Moreno

Even though the 3vSM model has shown good agreement in many experiments, some anomalies have been observed in neutrino experiments at short baseline hinting to a new sterile neutrino flavor at $\Delta m^2_{new} \sim 1 \text{ eV}^2$: arXiv:1805.12028 arXiv:hep-ex/0104049 (2001)

17.5

15

10

7.5

5

0.4

0.6

2.5

12.5

LSNI

- Accelerator Experiments
- 3eam Excess • LSND: Observed excess of $\overline{v_e}$ events in the channel $\overline{v_e} + p \rightarrow e^+ + n$ at a significance of 3.8 σ .
 - ➤ MiniBooNE: Electron-like excess observed in both v and \overline{v} modes, with a significance of 4.7 σ .
- Radiochemical Experiments
 - → SAGE and GALLEX: Measured ⁷¹Ge production rate at $R = 0.84 \pm 0.05$, recently confirmed by BEST experiment at 4σ .
- *Reactor Experiments*
 - \rightarrow Neutrino-4: Observed a v_{e} disappearance signal with L/E_v modulation (~1–3 m/MeV) at the SM-3 reactor (Dimitrovgrad).

Combined analysis of Neutrino-4 with other experiments results in a best fit of $\Delta m_{14}^2 = 7.3 \text{ eV}^2$ and $\sin^2(2\theta_{14}) = 0.36$ at 5.8 σ

Guadalupe Moreno

The ICARUS Detector Subsystems

Time Projection Chambers (TPC)

 \sim 54k channels at different orientations and 3 mm pitch

Photon Detection System (PDS)

- 360 PMTs, TPB coated to detect scintillation light
- Event timing and triggering purposes

Cosmic Ray Tagger (CRT)

- $\sim 4\pi$ scintillator panels with SiPM readout for cosmic tagging - Protected by \sim 2.85 m thick concrete overburden for external γ/n suppression

Guadalupe Moreno

Cathode

TPC

PMTs

Side CRT

Eur. Phys. J. C 83, 467 (2023)

Anode Wire planes

Field cage

ICARUS Detector Validation

Deposited energy is used to *validate calibration and improve calorimetric reconstruction*.

- Difference between calorimetric energy reconstruction and the range measurement of the proton and stopping muon energy.
- π^0 from neutrino interactions, achieving ${\sim}10\%$ resolution on $m_{_{YY}}$

v events identified through visual scanning of collected data are used to test automated software tools:

• The difference between automatic and visually reconstructed vertex positions for ~500 visually selected v_{μ} CC candidates shows a resolution of a few millimeters.

EMB-based calibration is applied

Guadalupe Moreno

ICARUS Detector Performance

- Cosmic Ray Rejection and Neutrino Timing Reconstruction
 - Time-of-Flight Rejection: Use external CRT and inner PMT system to reject incoming cosmic rays.
- Beam Spill Timing Reconstruction
 - Bunched structure of BNB and NuMI beam spill identified using neutrino interaction time (PMT) relative to proton beam extraction counters, with cosmic rejection (CRT) and neutrino time-of-40 flight (ToF) correction applied.

Guadalupe Moreno

v-Ar Interactions from NuMI

- ICARUS has a large NuMI dataset for v-Ar cross-section measurements:
 - > 332k v_{μ} CC and 17k v_e CC interactions in 6×10²⁰ POT.
- Currently *available data:* ~3.42×10²⁰ POT.
- *NuMI's neutrino energy* spectrum ranges from a few hundred MeV to a few GeV, *covering the energy range relevant for the DUNE* experiment.

Guadalupe Moreno