

STATUS AND PERSPECTIVES OF THE CONNIE EXPERIMENT

LATEST RESULTS

Y. Sarkis (on behalf of the CONNIE collaboration) UNAM-ICN

COHERENT NEUTRINO NUCLEUS INTERACTION EXPERIMENT

► INTRODUCTION

► CONNIE EXPERIMENT

► SKIPPER-CCD RUN

▶ CONNIE WITH SKIPPERr-MCM's

COHERENT NEUTRINO-NUCLEUS SCATTERING (CE $\nu \rm NS$) WITH REACTOR ANTINEUTRINOS

- Occurrence of neutral-current neutrino interactions in the Standard Model.
- The existence of elastic neutrino-nucleus scattering proposed for the first time in 1974 (no energy threshold) a .

^aPredicted in 1975 by D.Z. Freedman in 1973, V.B. Kopeliovich and L.L. Frankfurt, JETP Lett. 19 4 236 (1974). First detected by the COHERENT collaboration in 2017 with CsI crystals (2021 and 2024 in LAr and Ge).

Coherent Elastic Neutrino Nucleus Scattering ($CE\nu NS$)

$$\frac{d\sigma}{dE_R} = \frac{G_F^2}{4\pi} \left(N - Z \left(1 - 4\sin^2 \theta_w \right) \right)^2 m_N \left(1 - \frac{m_N E_R}{2E_\nu^2} \right) F^2 \left(E_R \right) \tag{1}$$

It can be use to test (low energy neutrino spectrum $E_{\nu} < 10$ MeV):

- **Particle physics:** Weak mixing angle, ν -EM properties and NSI like light mediators, etc.
- Nuclear physics: Nuclear form factors, neutron radius, etc.
- Astrophysics: Solar and supernova neutrinos.
- New physics: Sterile neutrinos, dark matter, etc.
- Applications: Nuclear security, monitoring nuclear reactors, etc.
- arXiv:2203.07361 and O.Miranda, MagnificentCEVNS 2024

▶ INTRODUCTION

► CONNIE EXPERIMENT

▶ SKIPPER-CCD RUN

▶ CONNIE WITH SKIPPERr-MCM's

The CONNIE experiment Coherent Neutrino-Nucleus Interaction Experiment (CONNIE)

- Its main to detect $\mathrm{CE}\nu\mathrm{NS}$ interaction due to reactor antineutrinos in Si nuclei.
- Place limits in BSM physics.
- The detectors are thick (675 mm) scientific CCDs made from high Si resistivity operated at temperatures (< 100 K).

The CONNIE Collaboration

Centro Atómico Bariloche, Universidad de Buenos Aires, Universidad del Sur / CONICET, Centro Brasileiro de Pesquisas Físicas, Universidade Federal do Rio de Janeiro, CEFET-Angra, Universidade Federal do ABC, Instituto Tecnológico de Aeronáutica, Universidad Nacional Autónoma de México, Universidad Nacional de Asunción, University of Zurich, Fermilab [14 inst, 6 count.]

- Located in the Almirante Alvaro Alberto nuclear plant near Rio de Janeiro, Brazil.
- At 30 m from the core of the 3.95 GWth Angra 2 reactor.
- Flux of $\approx 8 \times 10^{12} \ \bar{\nu}_e \ \mathrm{cm}^{-2} \ \mathrm{s}^{-1}$.

CONNIE Time Line

Previous CONNIE publications: HEP

CCDs in copper box (2016 Upgrade)

4k × 4k, 15 μm × 15 μm pix, 675 μm thick standard CCD

 $\begin{array}{l} \mbox{Skipper CCD: } 1022 \times 682 \mbox{ pix} \\ 15 \times 15 \mu m^2 \mbox{ , } 675 \mu m \mbox{ thick,} \\ 0.5 \mbox{ g total mass.} \end{array}$

► INTRODUCTION

► CONNIE EXPERIMENT

► SKIPPER-CCD RUN

▶ CONNIE WITH SKIPPERr-MCM's

Skipper-CCD

- Skipper-CCD sensors allow to reach very low energies:
- Repeated non-destructive charge measurement.
- Sub-electron noise levels. (*PRL 119 (2017)*)
- Individual electron detection.

• Two Skipper-CCDs were installed at the CONNIE setup in July 2021.

• Low treshold Acquisition readout electronics. JATIS 7(2021),1015001

Skipper-CCD performance.

- Each pixel charge is read out with N = 400 samples.
- Ultra-low noise = 0.15 e^- . Threshold 15 $eV_{ee} \approx 250 eV_{nr}$.
- Self-calibrated detector, $1 e^- \approx 3.7$ eV.
- Single-electron rate = $0.045e^{-}/\text{pix}/\text{day}$ (low for surface).

Comparison between Reactor-ON and Reactor-OFF event rates.

- 243 days of data with reactor-ON and 57 days OFF.
- Exposure of 14.9 g-days with Reactor-ON and 3.5 g-days with Reactor-OFF.
- No excess ($CE\nu NS$ or otherwise) observed.
- Flat background rate ≈ 4 kdru.

(Top) CONNIE Skipper reactor-on & reactor-off spectra. (bottom) Their difference.

(arXiv:2403.15976)

$CE\nu NS$ search in the lowest-energy bins of reactor ON-OFF rates.

- Updated neutrino flux model with improved antineutrino spectra for $^{235}\mathrm{U},^{238}\mathrm{U},$ $^{239}\mathrm{Pu}$ and $^{241}\mathrm{Pu}.$
- Updated Sarkis quenching factor model for Si. (PRA 107, 062811 (2023))
- Improved descriptions of the electronic stopping, interatomic potential and electronic binding at sub-keV energies, $E_{nr} > 0.24 \text{ keV}_{nr}$ (15 eV_{ee}).

	1		1	í.		
Measured Energy	Sarkis (2023) rate	Chavarria rate	Observed 95% C.L.	Expected 95% C.L.		TT.
$[\rm keV_{ee}]$	$[\rm kg^{-1} d^{-1} \rm keV^{-1}_{\rm ee}]$	$[{\rm kg^{-1}d^{-1}keV_{ee}^{-1}}]$	$[\rm kg^{-1} d^{-1} \rm keV_{ee}^{-1}]$	$[\rm kg^{-1}d^{-1}\rm keV^{-1}_{\rm ee}]$	10-1-	1 Statistics
0.015 - 0.215	$29.3^{+4.6}_{-4.7}$	17.7 ± 3.3	2.24×10^3	3.18×10^{3}		
0.215 - 0.415	$2.7^{+1.3}_{-1.2}$	2.20 ± 0.21	$7.36{\times}10^3$	4.77×10^3	/	Sarkis 2023
0.415 - 0.615	$0.43 {}^{+0.41}_{-0.39}$	0.36 ± 0.04	3.41×10^3	3.31×10^3	1	Chavarria
					10-2 10-1	1 .

arXiv: 2403.15976

- Observed limit at 76x the expected SM predicted Rate (with Sarkis QF).
- Comparable to our previous limit with standard CCDs and 10^3 larger exposure.

Light vector mediator Z' searches in the $CE\nu NS$ detection channel

- In the framework of a universal simplified model (JHEP 05, 118 (2016)).
- The rate for additional interactions, RSM + Z', is calculated and compared to limit at 90% C.L.
- Based on the lowest-energy bin (15–215 eV_{ee}).
- Slight improvement at low $M_{Z'}$ on our previous limit in $g_{Z'}$. arXiv:2403.15976

Dark Matter Search

- A search for DM-electron interactions by diurnal modulation.
- Galaxy DM wind comes from a preferred direction 40° N.
- Earth propagation induces a daily modulation.

- Binned data are compared to DaMaSCUS simulations.
- MeV-scale DM, kinetically-mixed dark photon.
- Best DM-electron limits by a surface experiment. arXiv:2403.15976

Search for Millicharged Particles arXiv:2405.16316

- Relativistic millicharged particles (χ_a) can be pair-produced from Compton-like scattering of high-energy γ -rays from reactors.
- Interact electromagnetically with matter via ionization. •
- Cross-section includes collective excitations. •
- Plasmon peak at 10–25 eV. arXiv: 2403.00123 •
- Joint analysis between CONNIE and Atucha-II experiments.
- World-leading limits on millicharged couplings ($m_{\chi_q} < 1$ MeV). •

► INTRODUCTION

► CONNIE EXPERIMENT

▶ SKIPPER-CCD RUN

► CONNIE WITH SKIPPERr-MCM's

Multi-Chip-Module (MCM) offers a compact arrangement of sensors:

- 16 Skipper-CCD sensors on the same module, 32x increase in mass (8 g).
- Designed for the Oscura experiment.
- Multiplexed readout.
- A MCM was installed at CONNIE in May 2024:
- New vacuum interface and multiplexer boards.

Oscura design [JINST 18 (08), P08016]

 $19 \, / \, 26$

► INTRODUCTION

► CONNIE EXPERIMENT

► SKIPPER-CCD RUN

▶ CONNIE WITH SKIPPERr-MCM's

Summary and Outlook

- Skipper-CCDs are very promising for detecting low-energy processes.
- Excellent performance in 2021-2023 with flat background and 15 $\rm eV_{ee}$ threshold.
- New CE ν NS limit with 18.4 g-days is comparable to previous with higher exposure.
- New competitive limits on vector mediator, DM modulation and millicharged particles.
- The experiment started its next phase with a 16-sensor Multi-Chip-Module.

Thank you for listening! Your feedback will be highly appreciated

Y. Sarkis acknowledges support from DGAPA-UNAM grants CONAHCYT CF-2023-I-1169, PAPIIT IN104723 and CONAHCYT grant CB2014/240666.

- 2016-18 Run with active mass of 47.6 g.
- Readout noise ranging from 1.7-2.2 e-
- Energy spectrum with reactor on (2.1 kg-day) vs data with reactor off (1.6 kg-day).
- Extract upper limit for the CEvNS event rate.
- Expected rate calculated with different QF models.

CONNIE improvements made in this run:

- + 1×5 pixel rebinning reduces readout noise .
- Low-energy background characterization and reduction.
- Cuts to remove anomalous large low energy events.
- Simulation of Partial Charge Collection (PCC) layer in the back side of the CCD.
- Ionization efficiency improved model, accounts binding for energy.

- 8 CCDs with total active fiducial mass of 36.2 g.
- Exposures of **31.85** days (reactor on) and **28.25** days (reactor off).
- Total exposure: **2.2 kg-days.**
- Upper limits at 95% CL on the measured CE ν NS rate.
- Lowest energy bin: Expected (34-39) and Observed (66-75) times the prediction.

BSM physics results

- Event rate in lowest E bin gives limits to non-standard neutrino interactions: Simplified models with light scalar (φ) and vector (Z') mediators.
- Restrictive limits for low mediator masses M_{ϕ} < 30 MeV, $M_{Z'}$ < 10 MeV.
- · First competitive constriction to BSM physics from CEvNS in reactors!
- Best current limit from the CONUS experiment [JHEP, 085, 05, 2022]

