Assessing the QGP speed of sound in ultracentral heavy-ion collisions with ALICE **Omar Vazquez** on behalf of the ALICE Collaboration

XV Latin American Symposium on High Energy Physics November 4 - 8, 2024, Cinvestav, Mexico city

Heavy ion collisions

ALICE, EPJ C84 (2024) 813

Heavy ion collisions are proposed as a means for investigating the EoS of hot matter.

The speed of sound (c_s) in the QGP

- Velocity at which compression waves travel in a fluid.
- First attempt using ALICE heavy-ion data extracted $c_s^2 = 0.24$ at $T_{eff} = 222$ MeV.

The speed of sound (c_s) in the QGP

- Velocity at which compression waves travel in a fluid.
- First attempt using ALICE heavy-ion data extracted $c_s^2 = 0.24$ at $T_{eff} = 222$ MeV.

Ultra-central Pb—Pb collisions (UCCs)

- The QGP's volume is mostly fixed \rightarrow constrain impact parameter (b) fluctuations.
- Total entropy (S) can vary significantly \rightarrow increase of the charged-particle multiplicity (N_{ch}).
- Higher entropy \rightarrow higher temperature (T) $\rightarrow \langle p_T \rangle$ increases.

$$c_s^2 = \frac{d \ln T}{d \ln s}$$

Experimental determination: $c_s^2 = -\frac{1}{2}$ $d \ln \langle dN_{ch}/d\eta \rangle$

JY Ollitrault, Eur. J. Phys. 29 (2008) 275 FG Garden, Phys. Lett. B 809 (2020) 135749

What drives the rise of $\langle p_T \rangle$ in UCCs?

- Different centrality estimators \rightarrow different $< p_T >$.
- Can have a large effect on the extracted value of speed of sound.

Results for different centrality estimators

ALICE in Run 2

Relevant detectors:

Time Projection Chamber (15 in figure)

Observable	Label	Centrality estimation	$\langle p_{ m T} angle$ and $\langle { m d} N_{ m ch}/{ m d} \eta angle$	Minimum		
$N_{ m ch}$ in TPC	I	$ \eta \le 0.8$	$ \eta \le 0.8$	0		
	II	$0.5 \leq \eta < 0.8$	$ \eta \leq 0.3$	0.2		
E_{T} in TPC		$ \eta \le 0.8$	$ \eta \leq 0.8$	0		
	IV	$0.5 \leq \eta < 0.8$	$ \eta \leq 0.3$	0.2		
Inner Tracking System (6 and 7 in figure)						
Observable	l ahel	Centrality estimation	$\langle n_{\rm T} \rangle$ and $\langle dN_{\rm ch}/dn \rangle$	Minimun		
	Laber					
	V	$ \eta \le 0.8$	$\frac{\langle p_1 \rangle \operatorname{dird} \langle \operatorname{dir} \operatorname{cn} \rangle \operatorname{dir} \eta}{ \eta \le 0.8}$	0		
V in SPD	V VI	$\begin{aligned} \eta &\leq 0.8\\ 0.5 &\leq \eta < 0.8 \end{aligned}$	$\begin{aligned} \eta &\leq 0.8\\ \eta &\leq 0.3 \end{aligned}$	0 0.2		
$V_{\mathrm{tracklets}}$ in SPD	V VI VII	$ \eta \le 0.8$ $0.5 \le \eta < 0.8$ $0.3 < \eta < 0.6$	$\begin{aligned} \eta &\leq 0.8\\ \eta &\leq 0.3\\ \eta &\leq 0.3\end{aligned}$	0 0.2 0		
$V_{ m tracklets}$ in SPD	V VI VII VIII	$ert \eta ert \leq 0.8$ $0.5 \leq ert \eta ert < 0.8$ $0.3 < ert \eta ert < 0.6$ $0.7 \leq ert \eta ert < 1$	$\begin{array}{c} \eta \le 0.8 \\ \eta \le 0.3 \\ \eta \le 0.3 \\ \eta \le 0.3 \\ \eta \le 0.3 \end{array}$	0 0.2 0 0.4		

Observable	Label	Centrality estimation	$\langle p_{ m T} angle$ and $\langle { m d} N_{ m ch} / { m d} \eta angle$
$N_{ m ch}$ in VZERO	IX	$-3.7 < \eta < -1.7$ and $2.8 < \eta < 5.1$	$ \eta \leq 0.8$

ZDC (18 in figure)

Estimate the mean number of participating nucleons (<*N*_{part}>)

Data-driven extraction of <**N**_{part}> **for UCCs**

 $\langle N_{part} \rangle$ v.s. centrality: indirect measure of the interaction region radius. A = 208, $\langle E_N \rangle$ ($\langle E_P \rangle$) is the mean neutrons(protons) energy in the ZDC, α_N and α_P are acceptance corrections, and $E_A=2.51$ TeV. ALICE-PUBLIC-2020-001

Normalized p_T spectra ratios

- Multiplicity-based centrality estimators: enhances yield at $p_T \sim 3$ GeV/c (radial flow bump).
- E_T -based centrality estimator: enhances yield for $p_T > 1$ GeV/c.

 $(\mathrm{d}^2 N/\langle \mathrm{d} N_{\mathrm{ch}}/\mathrm{d}\eta\rangle\mathrm{d}\eta\mathrm{d}p_{\mathrm{T}})^{\mathrm{Centrality\ percentile}}$ Normalized ratio =

Normalized p_T spectra ratios

- Multiplicity-based centrality estimators: enhances yield at $p_T \sim 3$ GeV/c (radial flow bump).
- E_T -based centrality estimator: enhances yield for $p_T > 1$ GeV/c.

Normalized ratio =

Extracting the squared speed of sound, c_s^2

Primary observable:
$$\langle p_{\rm T} \rangle / \langle p_{\rm T} \rangle^{0-5\%}$$
 versus $\langle dN_{\rm ch}$
 $\langle p_{\rm T} \rangle / \langle p_{\rm T} \rangle^{0-5\%} = \left[\frac{N_{\rm ch}^*}{f(N_{\rm ch}^*, N_{\rm ch,knee}^*, \sigma_0)} \right]^{c_s^2}$

Where
$$N_{\rm ch}^* = \langle dN/d\eta \rangle / \langle dN/d\eta \rangle^{0-5\%}$$

Below the knee $\langle p_{\rm T}\rangle/\langle p_{\rm T}\rangle^{0-5\%}=1$

 $/d\eta\rangle/\langle dN_{\rm ch}/d\eta\rangle^{0-5\%}$ correlation

Gaussian distribution of the number of emitted particles for a fixed impact parameter

Estimating the $N^*_{ch,knee}$ and σ_0

- the number of emitted particles for a fixed impact parameter.
- $N^*_{ch, knee}$: average charged-particle multiplicity in collisions at b = 0.

SJ Das, PRC 97, 014905 (2018) ALICE-PUBLIC-2024-002

• Model the event fraction distribution with a convolution of Gaussian distributions, each describing

Extracting the squared speed of sound, c_s^2

Extracting the squared speed of sound, c_s^2

Extracting the squared Speed of sound, $c_s^2 = 0.181_{0.00266}^{0.01431}$ (stat)

- Extraction of c_s^2 depends on the centrality estimation.
- Speed of sound also decreases with N_{ch} centrality estimator
 when η gap placed.

Centrali

-1.7

UNIVERSITY OF

η

-3.7

T>

Extracting the squared speed of sound, $c_s^2 = 0.181_{0.00266}^{0.01431}$ (syst) 1.005 104, $c_s^2 = 0.181_{0.00266}^{0.00266}$ (syst) 1.005 104, $c_s^2 = 0.181_{0.0026}^{0.00266}$ (syst) 1.005 104, c_s^2 = 0.181_{0.0026 0.00344 (stat)

- Extraction of c_s^2 depends on the centrality estimation.
- Speed of sound also decreases with N_{ch} centrality estimator

Extracted c_s^2 v.s. pseudorapidity gap

- A clear picture emerges \rightarrow Extracted speed of sound higher for E_{T} compared to N_{ch} centrality estimator with fixed eta gap for ALICE.

Conclusions

- equation of state.
- The $\langle p_T \rangle / \langle p_T \rangle^{0-5\%}$ versus $\langle dN_{ch}/d\eta \rangle / \langle dN_{ch}/d\eta \rangle^{0-5\%}$ correlation depends on the definition of centrality.
- Experimental confirmation of Trajectum model prediction.
- The extraction of c_s^2 is not trivial \rightarrow biases are significant.
 - based estimators \rightarrow short and long-range $< p_T > < p_T >$ correlations.
- Call for a reevaluation of how the c_s^2 can be extracted from heavy-ion data.

• ALICE observes an increase of $< p_T >$ with $< dN_{ch}/d\eta >$ in UCCs \rightarrow new opportunity to investigate QGP

• The extracted c_{c}^{2} using E_{T} -based centrality estimators is larger compared to that using the N_{ch} -

Backup

Ultra-central Pb—Pb collisions (UCCs)

- The QGP's volume is mostly fixed \rightarrow constrain impact parameter fluctuations.
- Total entropy (S) can vary significantly \rightarrow increase of the charged-particle multiplicity (N_{ch}).

coordinates of Pb-Pb collisions @ 5.02 TeV

c_s^2 from the EoS compared to the extracted values

arXiv:2403.06052v2

Measuring the $\langle p_T \rangle$ and $\langle dN/d\eta \rangle$ in UCCs

- Pb–Pb data at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
- Use high multiplicity and high transverse energy events to select UCCs.
- Measure the p_T spectra in narrow percentile bins.
- Correct the spectra by tracking inefficiency and secondary particle contamination.

- Extrapolation to $p_{T}=0$
- By fitting the spectra in 0.15< p_T < 1.5 GeV/c with a Boltzmann-Gibbs Blast-Wave model. • Measure $\langle p_T \rangle$ and $\langle dN/d\eta \rangle$ in the p_T interval between 0 and 10 GeV/c.
- The fraction of extrapolated yields is about 9%.

Forward-backward <pt> correlations

ALI-PREL-119780

Dependence of $\langle b \rangle$ on the centrality estimator

Trajectum simulations; the average impact parameter ($\langle b \rangle$) decreases slowly for ultra-central collisions (<0.01%).

The centrality selector based on N_{ch} without p_T bias does best at selecting ultra-central collisions because ** is both, constant and lowest.

Omar Vazquez

16