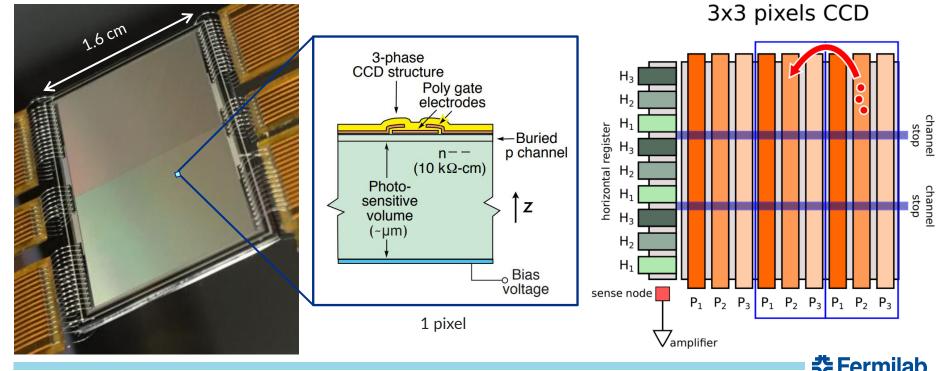
OSCURA: a 10-kg skipper-CCD detector to search for dark matter

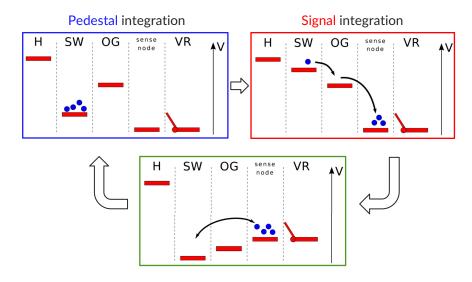
Brenda Aurea Cervantes Vergara
Fermi National Accelerator Laboratory
bren.cv19@gmail.com

XV Latin American Symposium on High Energy Physics (SILAFAE) November 4-8, 2024 @ CINVESTAV, Mexico City



Scientific Charge-Coupled Devices

CCDs are pixelated ionization sensors, usually made of silicon.


lonizing radiation interacting in the substrate produces **electron-hole pairs**.

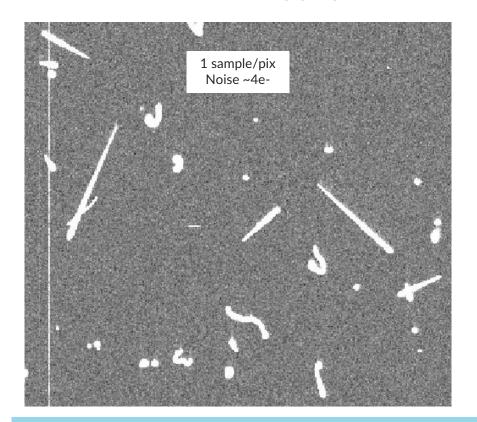
Charge is collected near the surface, transferred pixel by pixel and read out in the sense node.

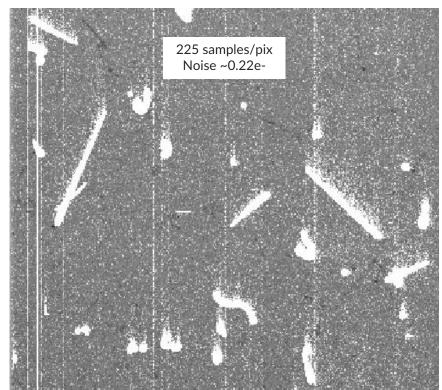
Floating gate sense node allows multiple non-destructive measurements of same charge packet.

The N independent measurements are averaged off-chip and noise gets reduced as $\sigma = \frac{\sigma_1}{\sqrt{N}}$

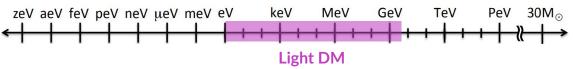
(Charge value); = Signal; - Pedestal;

Charge value =
$$\frac{1}{N} \sum_{i=1}^{N} (\text{Charge value})_i$$

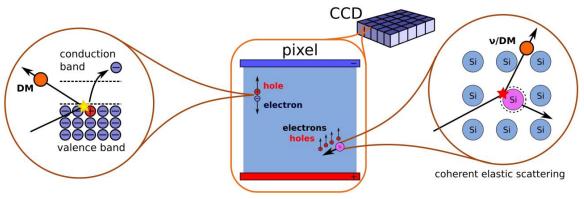

 $2017 \rightarrow \text{First demonstration of discrete sub-electron}$ **noise** in a large-area detector designed by LBNL.

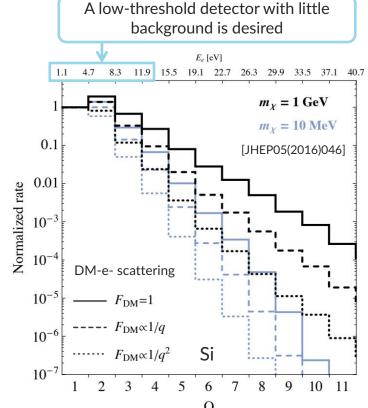


Skipper-CCDs are very powerful particle cameras!


Sub-electron noise allows to deeply explore what is invisible with standard CCDs.

Skipper-CCDs for light dark matter direct detection

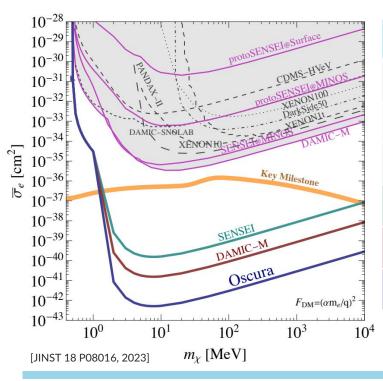

Light DM candidates are motivated by various dark sector models.


Light DM masses through different detection channels:

1-1000 MeV → DM-e- scattering

1-1000 MeV → DM-nucleus scattering through Migdal effect

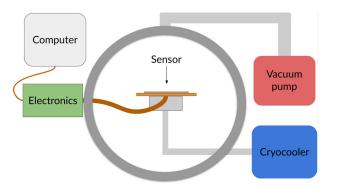
1~1000 eV → DM absorption

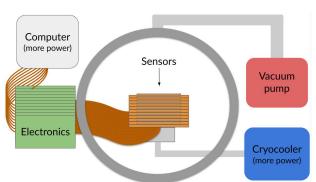


Skipper-CCDs for light dark matter direct detection: ongoing program

Skipper-CCDs are constantly producing world-leading limits on light DM candidates since 2019. Now, we are pushing towards more mass and less backgrounds.

Oscura will have the ultimate DM skipper-CCD detector, joining expertise from all ongoing efforts.


Experiment	Mass [kg]	#CCDs	Rate <10 keV [dru]	1e- rate [e-/pix/day]	Commissioning
SENSEI @ MINOS	~0.002	1	3370	1.6 x 10 ⁻⁴	late-2019
DAMIC @ SNOLAB	~0.02	2	9.7	2.4 x 10 ⁻³	late-2021
DAMIC-M LBC	~0.02	2	10	4.5 x 10 ⁻³	late-2021
SENSEI @ SNOLAB	~0.048 0.1*	22 50*	~50	1.4 x 10 ⁻⁵ 1 x 10 ⁻⁵ *	mid-2022
DAMIC-M	~1*	~209*	0.1*	1 x 10 ^{-5*}	~2025
OSCURA	~10*	~24,000*	0.025*	1 x 10 ^{-6*}	~2029


*goal

How to go bigger?

1 CCD

20,000 CCDs?

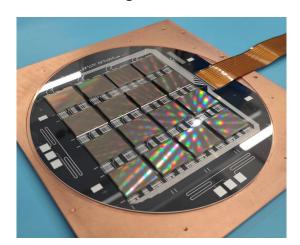
Needs:

Mass-production of sensors New sensors packaging New cryogenics New electronics Strict background control

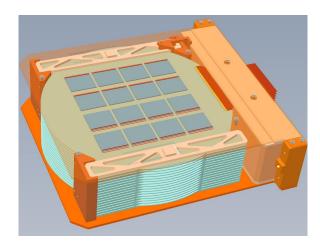
World largest camera (33.1 GPix)!

Detector payload

24,576 Skipper-CCDs = 1536 Multi-Chip Modules (MCMs) = **96 Super Modules** (SMs)


Skipper-CCD

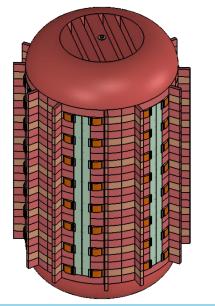
p-channel sensors designed at LBNL Fabricated at new commercial foundry 1.35 MPix each - 725 μm thick

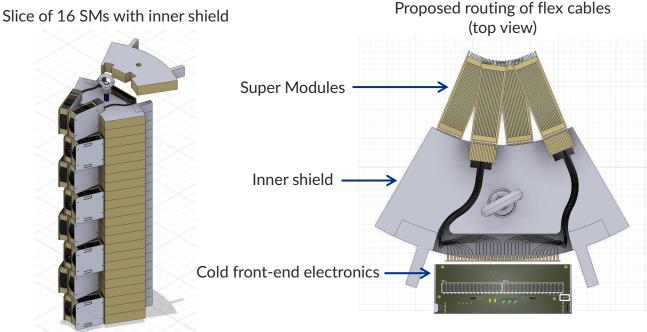

MCM

16 Skipper-CCDs
Intrinsic Si substrate with 1-layer Al traces
Low-background flex cable

SM

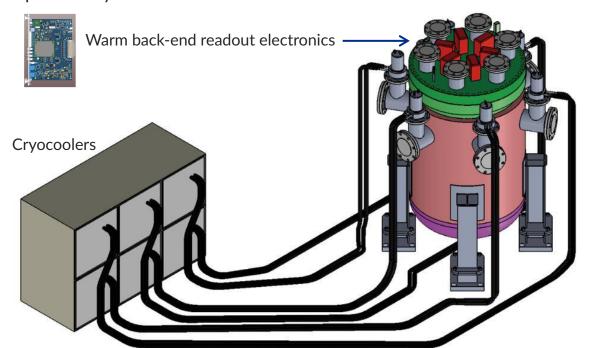
16 MCMs Radiopure materials (Si, PTFE, EF-Cu)

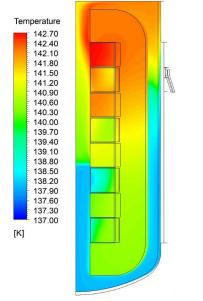




Detector payload with inner shield

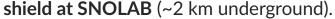
96 SMs surrounded by **15-cm-thick inner shield (Pb+Cu)** to reduce backgrounds from vessel, flex cable and front-end electronics.

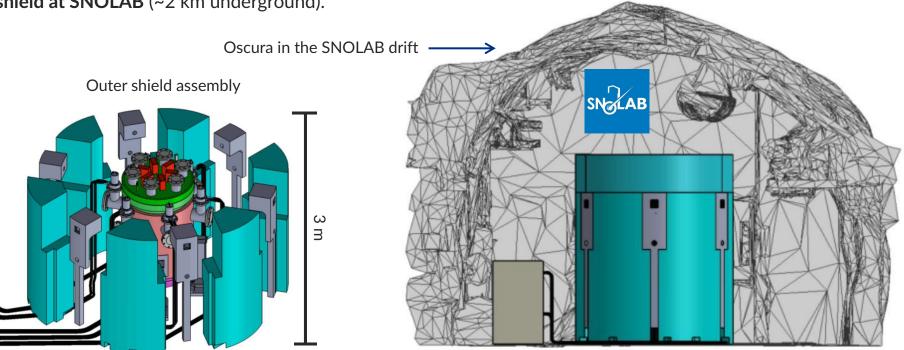

Cylinder-like array ~12.5 kg total (10 kg effective) mass



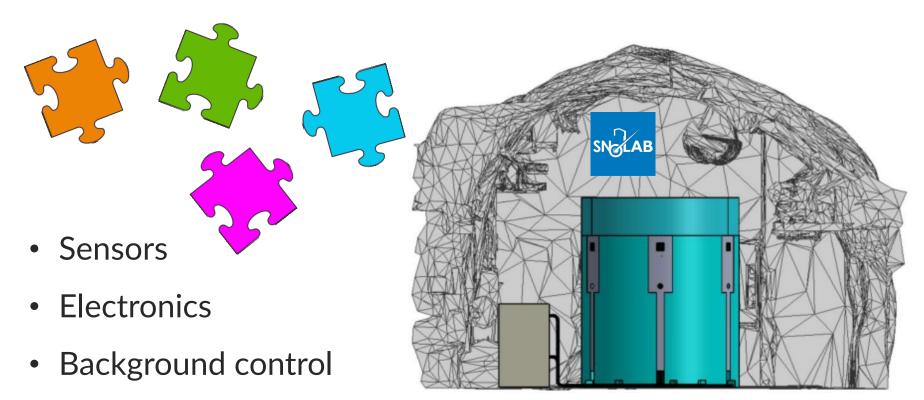
Pressure vessel

96 SMs surrounded by inner shield inside stainless steel pressure vessel filled with N_2 at 15 PSI, externally coupled to cryocoolers for heat removal to cool down sensors to 140K.




Thermal simulation with N₂ at 15 PSI

Pressure vessel with external shield at SNOLAB


96 SMs surrounded by inner shield inside stainless steel pressure vessel surrounded by **HDPE** and water outer

Let us go into the main pieces...

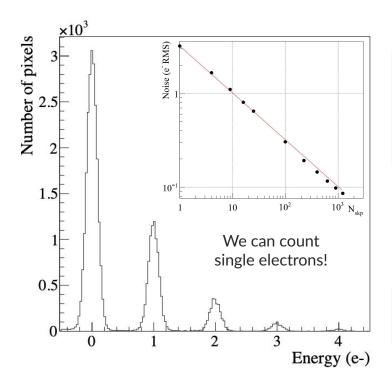

Oscura: Sensors

Sensor fabrication was done at a new foundry. Need to evaluate if their performance matches Oscura needs. So far, we have fabricated ~50 wafers of sensors. We packaged and tested ~600 sensors!

200-mm-diameter wafer

Single sensor packaged in Cu tray

Underground testing setup

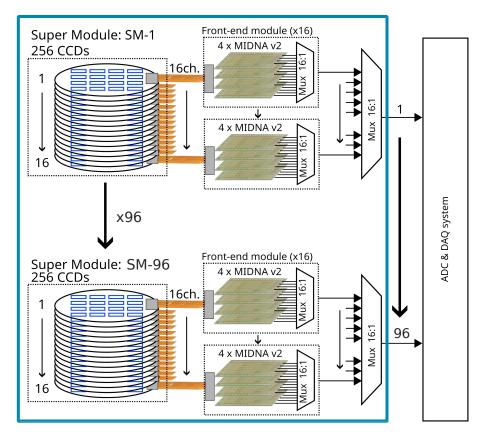


Oscura: Sensors performance

[NIMA 1046 (2023), 167681] [JINST 18 (2023) 08, P08016]

Sensor testing demonstrated the success of the fabrication, high yield (>85%) and uniformity.

Parameter	3e- threshold	Performance
Pixel readout rate [pix/s]	> 76	111
Readout noise [e- RMS]	< 0.20	0.19
Exposure-dependent 1e- rate [e-/pix/day]	1.6 x 10 ⁻⁴	1.8 x 10 ⁻³
Exposure-independent 1e- rate [e-/pix/image]	< 3.2 x 10 ⁻⁵	< 4.8 x 10 ⁻⁴

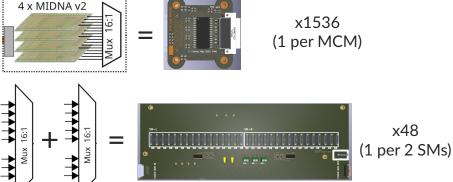

New results from SENSEI demonstrate lower 1e- rates are achievable!

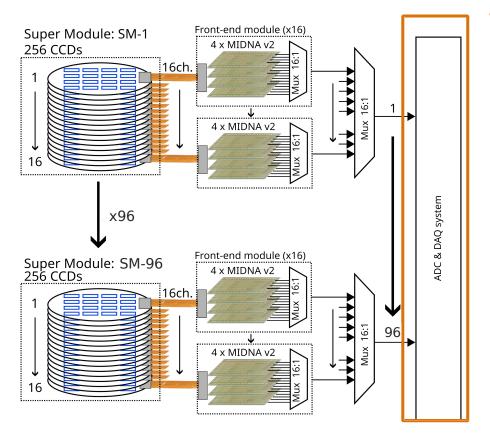
Parameter	SENSEI new results
Exposure-dependent 1e- rate [e-/pix/day]	1.4 x 10 ⁻⁵
Exposure-independent 1e- rate [e-/pix/image]	2.2 x 10 ⁻⁶

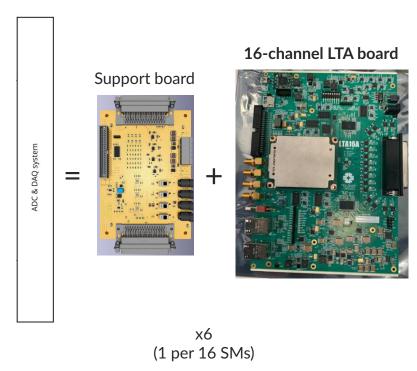
Oscura: Readout electronics

[Sensors 2022, 22(11), 4308]

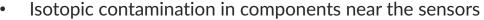
Cold front-end electronics:


MIDNA-ASIC → Design by F. Alcalde (Inst. Balseiro)




2 multiplexing stages \rightarrow 256 channels = 1 signal

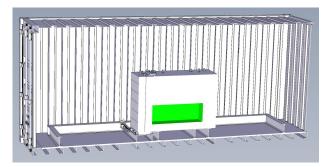
Warm back-end electronics:

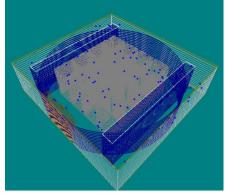


Oscura: Background control

Decisions driven by simulations and by expertise from pathfinder experiments.

Limiting factors:

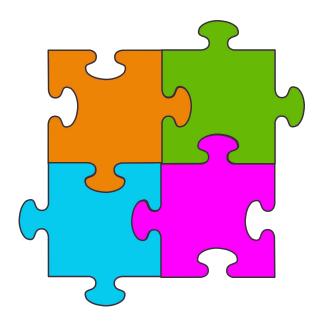

- Cosmogenic activation
 - → Shielded shipping containers and transportation planning
 - → Remove activation products during sensors fab [PRD 102, 102006]
 - → Underground module assembly

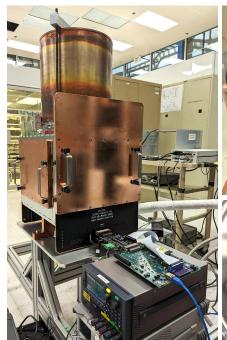


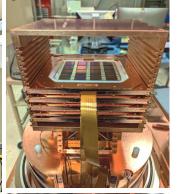
- → Material selection for Super Modules
- → Low-background flex cable [arXiv:2303.10862]
- → Electronics behind 15-cm-thick inner shield
- External backgrounds

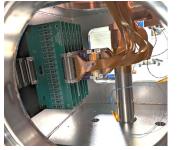
Outer shield: polyethylene + water

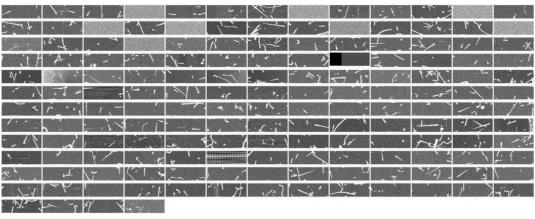
Inner shield: lead + copper




How is integration going?

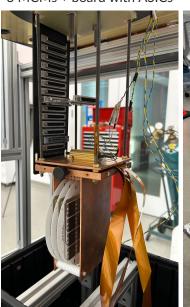


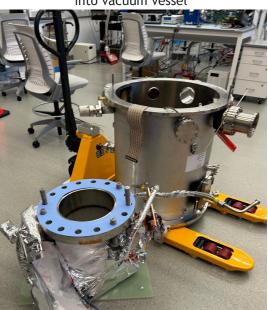



Twin of SENSEI @ SNOLAB vessel with 10 prototype ceramic MCMs and discrete electronics with multiplexing. Largest skipper-CCD instrument ever built! (~80 g)

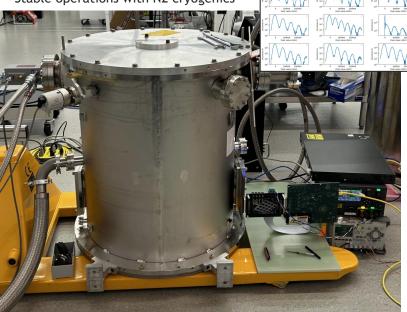
Demonstrated multiplexed readout, sensors yield, MCMs packaging, and sensors + electronics performance.

We read **160 sensors through 1 channel!** and had 90% of them working without a preselection!


Setup will be commissioned soon at MINOS with 16 MCMs to perform mCPs search from NuMI beam (Dark BeaTS)

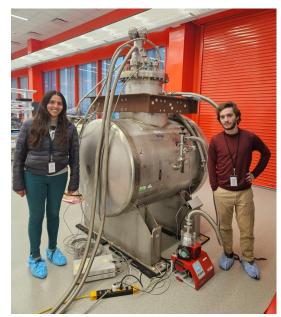

Oscura: Second demonstrator (June 2023)

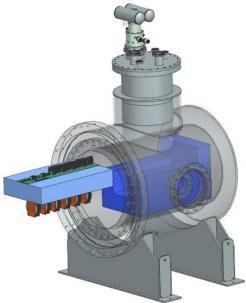
10-inch pressurized vessel filled with N₂, with 3 prototype ceramic MCMs and cold front-end electronics with MIDNAs. Demonstrated readout with ASICs, and sensors + cold front-end electronics performance and stability when cooled with N_2 .


3 MCMs + board with ASICs

10-inch pressure vessel goes into vacuum vessel

Stable operations with N2 cryogenics





Oscura: Integration Test

Starting the integration of vessel that can hold up to 6 SMs (780 g), filled with N2 at 15 PSI, with the final Oscura electronics design. Expected by beginning of 2025.

Short-term goals: Test systems integration and performance at large scale, high-volume assembly of MCMs, development of Oscura data processing and analysis tools.

Medium/long term goals: Use it as the underground testing vessel for final SMs pre-testing.

Parallel goals: Use it for early-science!

- Search for beam-produced mCPs

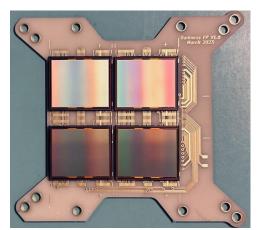
Home > Journal of High Energy Physics > Article

Searching for millicharged particles with 1 kg of Skipper-CCDs using the NuMI beam at **Fermilab**

Regular Article - Experimental Physics | Open access | Published: 13 February 2024 Volume 2024, article number 72, (2024) Cite this article

Interesting projects in synergy with Oscura

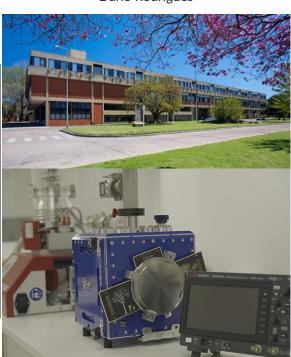
Dark BeaTS @ Fermilab Beam-produced mCPs search



CONNIE @ Brazil Reactor neutrino experiment

Darkness @ LEO Milky Way diffuse X-ray emission

Oscura: Sensors. Latin american participation


Laboratorio de Detectores ICN, UNAM, Mexico City Alexis Aguilar, Juan Carlos D'Olivo

First time we saw e-peaks with Oscura sensors (Nov 23, 2021)

LAMBDA Pabellón 1, UBA, Buenos Aires **Dario Rodrigues**

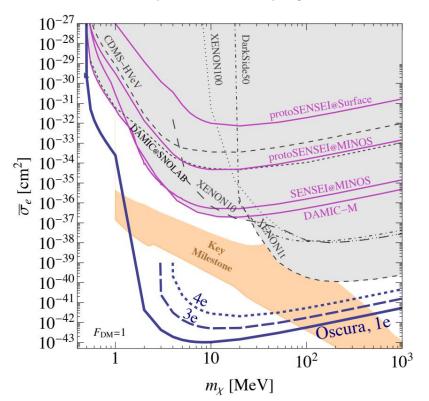
Oscura: Readout electronics. Latin american participation

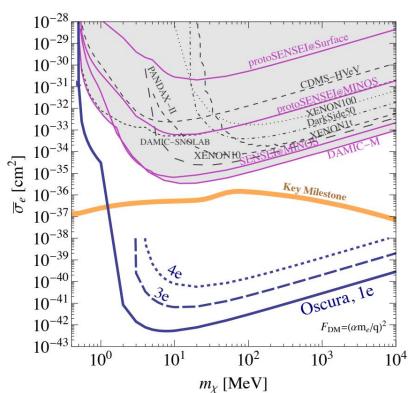
Jorge Molina

Fernando Chierchie

Miguel Sofo

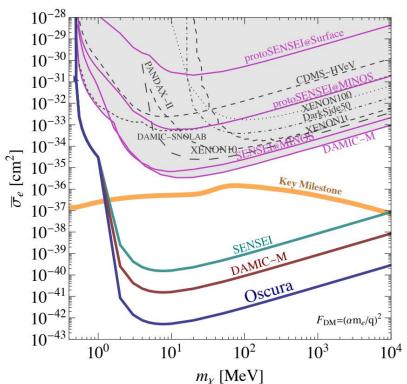
Take-home messages

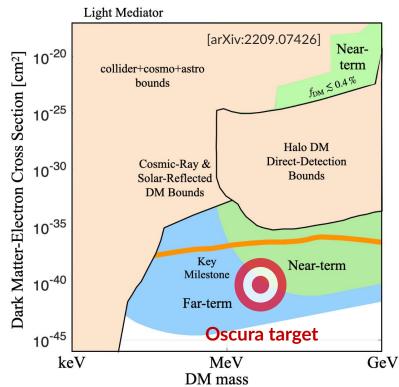

- Skipper-CCDs are a powerful technology to search for light DM.
- DM search with skipper-CCDs is a strong and ongoing program aiming for more massive detectors with less background.
- Oscura, the largest of these efforts (~10 kg effective mass), has enabled the scaling of this technology to multi-kg detectors.
- Oscura is ready to, hopefully, start construction in 2025/6.
- Oscura demonstrators are being successfully operated, some will be used for early science.
- Oscura has a big working group of latinos! You are invited to join us.


Stay tuned!

Oscura: Sensors performance to science reach

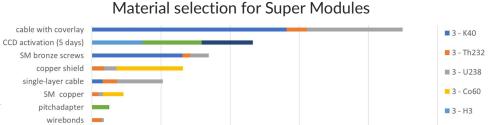
With current sensors performance, projected sensitivities lie between the 3e- and 4e- threshold curves.



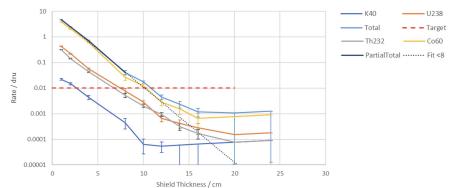


Oscura: Scientific reach

Oscura will constrain key DM models with its 30 kg-year exposure.



*2e- thr & 1x10-6 e-/pix/day


Oscura: Isotopic contamination control

0.015

Electronics behind 15-cm-thick inner shield

Background rate (DRU)

Low-background flex cable [arXiv:2303.10862]

DAMIC-M cable	²³⁸ U [ppt]	²³² Th [ppt]
Commercial	2600 +/- 40	261 +/- 12
Customed	31 +/- 2	13 +/- 3

Green: Step done at PNNL

28

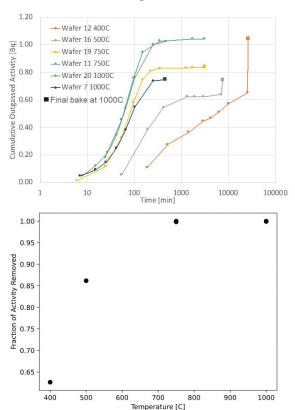
SM PTFE screws

0

0.005

cable PTFE spacers SM PTFE spacers

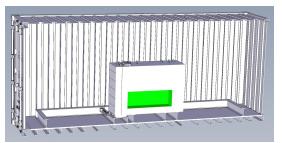
0.02


■ 3 - Na22

■ 3 - Be7

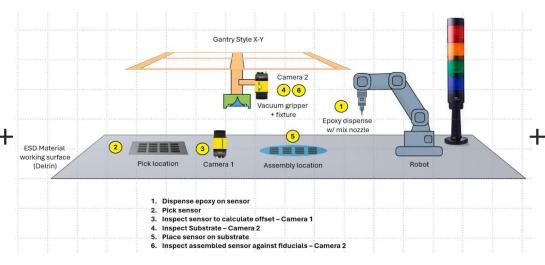
0.025

Oscura: Background cosmogenic activation control


H³ removal during sensors fabrication

Shipping containers and transportation planning

Ouration [d]	Step	Location	Latitude	Longitude		Neutron Flux [n/cm2/sec]		Shielding	Shielding Factor	Sea-level
3	Ingot growing	TOPSIL, Frederikssund, Denmark	55.83	12.11	0.015	3.41E-03	1.16	None	1	3.48
14	Ingot storage	Hospital basement, Copenhagen, Denmark	55.68	12.56	0.045	3.51E-03	1.19	Basement	50	0.33
28	Transport to Montreal		55.68	12.56	0	3.36E-03	1.14	Shielded Container	20	1.60
3	Transport to Phoenix		45.51	-73.55	0.864	7.74E-03	2.63	Shielded Container	20	0.39
4	Wafering	SUMCO, Phoenix, AZ	33.41	-111.94	0.36	4.24E-03	1.44	Shielded Box	2.25	2.56
14	Storage	San Xavier, AZ	31.97	-111.09	1.08	7.89E-03	2.68	Shallow Underground	400	0.09
66	PRE-FAB TOTAL									8.47
32	CCD processing	Microchip, Tempe, AZ	33.41	-111.94	0.36	4.24E-03	1.44	Shielded Box	2.25	20.51
30	Storage	San Xavier, AZ	31.97	-111.09	1.08	7.89E-03	2.68	Shallow Underground	400	0.20
2	Transport to Fermilab	Fermilab, IL	31.97	-111.09	0.864	6.56E-03	2.23	Shielded Container	20	0.22
60	Packaging	MINOS tunnel	41.83	-88.26	0.216	1.50E-06	5.10E-04	None (already applied)	1	0.03
60	Testing	MINOS tunnel	41.83	-88.26	0.216	1.50E-06	5.10E-04	None (already applied)	1	0.03
1	Transport to SNOLAB		41.83	-88.26	0.216	4.16E-03	1.41	Shielded Container	20	0.07
185	POST-FAB TOTAL									21.07
251	TOTAL									29.53

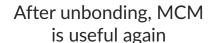


Oscura: Background cosmogenic activation control

Underground module assembly

Oscura: Sensors on-assembly testing

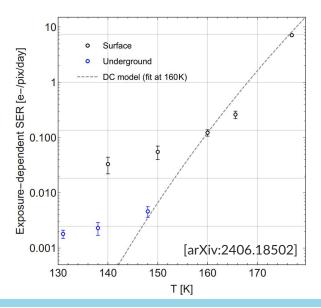
Sensors in MCMs are tested during wire-bonding

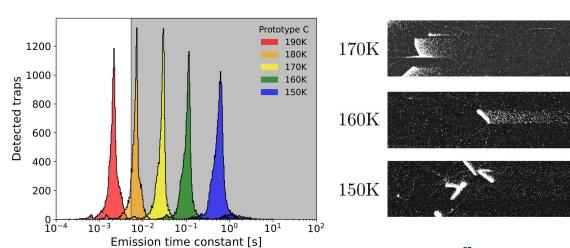

- 1. Wirebond one sensor
- 2. Use MCM tester -
- 3. Unbond that sensor
- 4. Repeat this recipe for next sensor

FAILED

PASSED

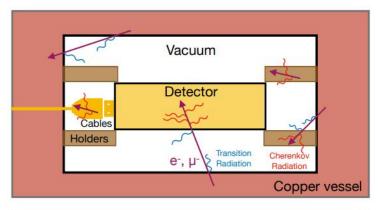
One very bad sensor can affect all neighbours

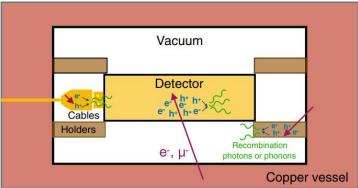

^{*}After building ~40 MCMs, we have 1 very bad & 1 bad sensor every 16 (Yield > 85%)

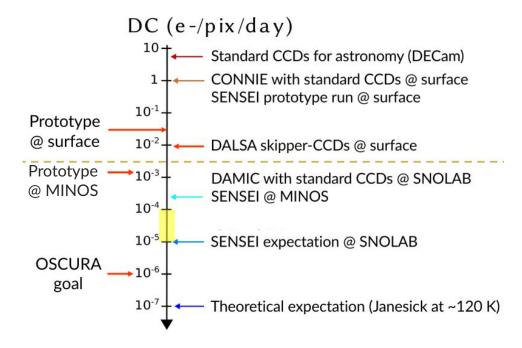

Oscura: Sensors performance

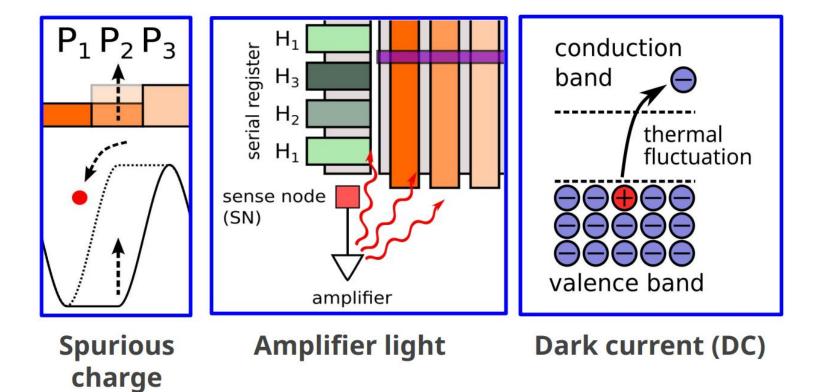
System	Parameter	3e- threshold	Sensors performance	Units
Sensors	Exposure-dependent 1e- rate	1.6 x 10 ⁻⁴	1.8 x 10 ⁻³	e-/pix/day

In the new sensors, there is a background of 1e- events from the emission of **single-electron traps**! Being at a lower background environment, **we expect a lower exposure-dependent 1e- rate for Oscura.**

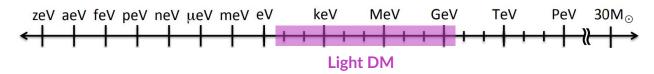



See out-of-the-oven paper: [arXiv:2406.18502]!


Low-E background correlation with high-E events


[PRX 12 (2022) 011009]

High-energy radiation interacting with setup results in low-E photons which can produce single-e- depositions that we are not efficiently extracting from our measurements.

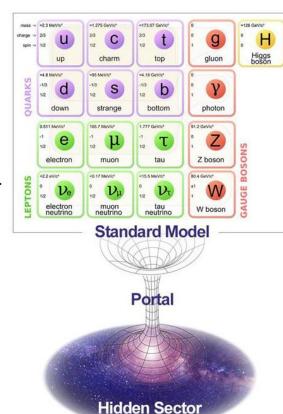

Low-E instrumental backgrounds in CCDs

Light dark matter

Light dark matter mass lies between eV to GeV.

Popular light DM models consider DM as part of a dark sector, consistent of new particles and interactions, that communicate with the SM through portals.

Dark photon (vector) portal:


 χ SM $\bar{\chi}$

A' kinetically mixed with SM photon

- DM with freeze-out abundance
- "Heavy" mediator: $\mathcal{O}(\text{keV}) \ll m_{A'} \leq \mathcal{O}(\text{GeV})$
- DM with freeze-in abundance
- "Ultra-light" mediator: $m_{A'} \ll \mathcal{O}(\text{keV})$
- Millicharged DM

Massless mediator: $m_{A'} = 0$

Light DM is commonly probed by low-threshold direct detection experiments.

