Latin American Symposium on High Energy Physics (SILAFAE)

Measurements of the Ultra-High-Energy Cosmic Ray Spectrum with the Pierre Auger Observatory

Universidade Federal do Paraná - Setor Palotina - Brazil

SILAFAE 2024 04-08 November 2024, Mexico City

Rita C. Anjos on behalf of the Pierre Auger Collaboration

Measurements of the Ultra-High-Energy Cosmic Ray Spectrum with the Pierre Auger Observatory

Rita C. Anjos on behalf of the Pierre Auger Collaboration

Universidade Federal do Paraná - Setor Palotina - Brazil

SILAFAE 2024 04-08 November 2024, Mexico City

Pierre Auger Observatory in

Measurements of the Ultra-High-Energy Cosmic Ray Spectrum with the Pierre Auger Observatory

Rita C. Anjos on behalf of the Pierre Auger Collaboration

Universidade Federal do Paraná - Setor Palotina - Brazil

SILAFAE 2024 04-08 November 2024, Mexico City

Pierre Auger Observatory in

Overview

- Motivation and State-of-the-art
- Pierre Auger Observatory
- Energy spectrum
- Summary

4

Slide by Daniel Biehl

Björn Eichmann, UHECR2018, Paris

11

arXiv:1903.07713v1, arXiv:1301.6824

PAOl. Science 2017;357:1266-1270

Björn Eichmann, UHECR2018, Paris

arXiv:1903.07713v1, arXiv:1301.6824

PAOl. Science 2017;357:1266-1270

Anjos et al 2018

Björn Eichmann, UHECR2018, Paris

What do we want to answer?

Some big questions and goals ...

- 1. What other sources might there be in the Galaxy?
- 2. How do we describe the transition to the extra-galactic component?
- 3. What are extra-galactic sources?
- 4. How do particles are accelerated?

• Pierre Auger Observatory

The **Pierre Auger Observatory** at a glance

Slide by F. Salamida

Southern hemisphere: Malargue, Province Mendoza, Argentina

Surface detector (SD)

• 1600 stations in 1.5 km grid, 3000 km² E > 10^{18.5} eV • 61 stations in 750 m grid, 23.5 km², E > 10^{17.5} eV • 19 stations in 433 m grid, E > 6 10¹⁶ eV

Fluorescence detector (FD)

• 24 telescopes in 4 sites, FoV: 0-30°, E>10¹⁸ eV • HEAT (3 telescopes), FoV: 30 - 60°, E>10¹⁷ eV

Auger Engineering Radio Array (AERA)

• 153 antennas in 17 km² array, E> 4 10¹⁸eV

Underground muon detector

• 19(61) stations in 433(750)m array 10^{16.5}<E< 10¹⁹ eV

Auger Phase I data taking from 2004 on (from 2008 with the full array) to 2023 **Auger Phase II** data taking from 2024 to 2035

Pierre Auger Observatory

The **Pierre Auger Observatory** at a glance

Slide by F. Salamida

Southern hemisphere: Malargue, Province Mendoza, Argentina

Surface detector (SD)

 1600 stations in 1.5 km grid, 3000 km² E > 10^{18.5} eV • 61 stations in 750 m grid, 23.5 km², E > 10^{17.5} eV • 19 stations in 433 m grid, E > 6 10¹⁶ eV

Fluorescence detector (FD)

• 24 telescopes in 4 sites, FoV: 0-30°, E>10¹⁸ eV • HEAT (3 telescopes), FoV: 30 - 60°, E>10¹⁷ eV

Auger Engineering Radio Array (AERA)

• 153 antennas in 17 km² array, E> 4 10¹⁸eV

Underground muon detector

• 19(61) stations in 433(750)m array 10^{16.5}<E< 10¹⁹ eV

Auger Phase I data taking from 2004 on (from 2008 with the full array) to 2023 **Auger Phase II** data taking from 2024 to 2035

Pierre Auger Observatory

The **Pierre Auger Observatory** at a glance

Slide by F. Salamida

Southern hemisphere: Malargue, Province Mendoza, Argentina

Surface detector (SD)

• 1600 stations in 1.5 km grid, 3000 km² E > 10^{18.5} eV • 61 stations in 750 m grid, 23.5 km², E > 10^{17.5} eV • 19 stations in 433 m grid, E > 6 10¹⁶ eV

Fluorescence detector (FD)

• 24 telescopes in 4 sites, FoV: 0-30°, E>10¹⁸ eV • HEAT (3 telescopes), FoV: 30 - 60°, E>10¹⁷ eV

Auger Engineering Radio Array (AERA)

• 153 antennas in 17 km² array, E> 4 10¹⁸eV

Underground muon detector

• 19(61) stations in 433(750)m array 10^{16.5}<E< 10¹⁹ eV

Auger Phase I data taking from 2004 on (from 2008 with the full array) to 2023 **Auger Phase II** data taking from 2024 to 2035

• Pierre Auger Observatory

• Pierre Auger Observatory

$$J(E; E < E_{ankle}) \propto E^{-\gamma_1}$$

$$J(E; E > E_{ankle}) \propto E^{-\gamma_2} \frac{1}{1 + \exp\left(\frac{\lg E - \lg E_c}{W_c}\right)}$$

$$ICRC \ 2007$$

log(Emin [eV])

ICRC 2007

• Cosmological evolution of the source luminosity

• Only proton or iron composition at the source

parameter	broken power laws	power laws + smooth function
$\gamma_1(E < E_{\text{ankle}})$	3.26 ± 0.04	3.26 ± 0.04
$\lg(E_{\rm ankle}/eV)$	18.61 ± 0.01	18.60 ± 0.01
$\gamma_2(E > E_{\text{ankle}})$	2.59 ± 0.02	2.55 ± 0.04
$lg(E_{\rm break}/{\rm eV})$	19.46 ± 0.03	
$\gamma_3(E > E_{\rm break})$	4.3 ± 0.2	
$\lg(E_{1/2}/eV)$		19.61 ± 0.03
$\lg(W_{ m c}^{'}/{ m eV})$		0.16 ± 0.03

ICRC 200 (1.5) 0.5

-0.5

HiRes Stereo Auger Combined PLB Auger Combined (this wor

k)	parameter	broken power laws	power laws + smooth function
	$\gamma_1(E < E_{\text{ankle}})$	3.27 ± 0.02	3.27 ± 0.01
	$lg(E_{ankle}/eV)$	18.61 ± 0.01	18.62 ± 0.01
	$\gamma_2(E > E_{\text{ankle}})$	2.68 ± 0.01	2.63 ± 0.02
	$\lg(E_{\rm break}/eV)$	19.41 ± 0.02	
	$\gamma_3(E > E_{\rm break})$	4.2 ± 0.1	
	$\lg(E_{1/2}/eV)$		19.63 ± 0.02
22	$\lg(W_{\rm c}/{\rm eV})$		0.15 ± 0.02
	χ^2/ndof	37.8/16 = 2.7	33.7/16 = 2.3

• Cosmological evolution of the source luminosity

• Only proton or iron composition at the source

parameter	broken power laws	power laws + smooth function
$\gamma_1(E < E_{\text{ankle}})$	3.26 ± 0.04	3.26 ± 0.04
$\lg(E_{\rm ankle}/eV)$	18.61 ± 0.01	18.60 ± 0.01
$\gamma_2(E > E_{\text{ankle}})$	2.59 ± 0.02	2.55 ± 0.04
$lg(E_{\rm break}/{\rm eV})$	19.46 ± 0.03	
$\gamma_3(E > E_{\rm break})$	4.3 ± 0.2	
$\lg(E_{1/2}/eV)$		19.61 ± 0.03
$\lg(W_{ m c}^{'}/{ m eV})$		0.16 ± 0.03

ICRC 2009 1.5 0.5

-0.5

HiRes Stereo Auger Combined PLB Auger Combined (this wor

k)	parameter	broken power laws	power laws + smooth function
)	$\gamma_1(E < E_{\text{ankle}})$	3.27 ± 0.02	3.27 ± 0.01
	$lg(E_{ankle}/eV)$	18.61 ± 0.01	18.62 ± 0.01
	$\gamma_2(E > E_{\text{ankle}})$	2.68 ± 0.01	2.63 ± 0.02
	$\lg(E_{\rm break}/eV)$	19.41 ± 0.02	
	$\gamma_3(E > E_{\rm break})$	4.2 ± 0.1	
	$\lg(E_{1/2}/\mathrm{eV})$		19.63 ± 0.02
00	$\lg(W_{ m c}/{ m eV})$		0.15 ± 0.02
23	χ^2/ndof	37.8/16 = 2.7	33.7/16 = 2.3

• Cosmological evolution of the source luminosity

• Only proton or iron composition at the source

parameter	broken power laws	power laws + smooth function
$\gamma_1(E < E_{\text{ankle}})$	3.26 ± 0.04	3.26 ± 0.04
$lg(E_{ankle}/eV)$	18.61 ± 0.01	18.60 ± 0.01
$\gamma_2(E > E_{\text{ankle}})$	2.59 ± 0.02	2.55 ± 0.04
$\lg(E_{\rm break}/{\rm eV})$	19.46 ± 0.03	
$\gamma_3(E > E_{\rm break})$	4.3 ± 0.2	
$\lg(E_{1/2}/eV)$		19.61 ± 0.03
$\lg(W_{ m c}^{'}/{ m eV})$		0.16 ± 0.03

ICRC 2009 1.5 0.5

0

-0.5

HiRes Stereo Auger Combined PLB Auger Combined (this wor

·k)	parameter	broken power laws	power laws + smooth function
)	$\gamma_1(E < E_{\text{ankle}})$	3.27 ± 0.02	3.27 ± 0.01
	$lg(E_{ankle}/eV)$	18.61 ± 0.01	18.62 ± 0.01
	$\gamma_2(E > E_{\text{ankle}})$	2.68 ± 0.01	2.63 ± 0.02
	$\lg(E_{\rm break}/{\rm eV})$	19.41 ± 0.02	
	$\gamma_3(E > E_{\rm break})$	4.2 ± 0.1	
	$\lg(E_{1/2}/\mathrm{eV})$		19.63 ± 0.02
\mathbf{O} ($\lg(W_{\rm c}/{\rm eV})$		0.15 ± 0.02
∠ 4	χ^2/ndof	37.8/16 = 2.7	33.7/16 = 2.3

• Cosmological evolution of the source luminosity

• Only proton or iron composition at the source

parameter	broken power laws	power laws + smooth function
$\gamma_1(E < E_{\text{ankle}})$	3.26 ± 0.04	3.26 ± 0.04
$lg(E_{ankle}/eV)$	18.61 ± 0.01	18.60 ± 0.01
$\gamma_2(E > E_{\text{ankle}})$	2.59 ± 0.02	2.55 ± 0.04
$\lg(E_{\rm break}/{\rm eV})$	19.46 ± 0.03	
$\gamma_3(E > E_{\rm break})$	4.3 ± 0.2	
$\lg(E_{1/2}/eV)$		19.61 ± 0.03
$\lg(W_{ m c}^{'}/{ m eV})$		0.16 ± 0.03

HiRes Stereo Auger Combined PLB Auger Combined (this wor

2

1.5

0.5

0

-0.5

ICRC 2009

k)	parameter	broken power laws	power laws + smooth function
,	$\gamma_1(E < E_{\text{ankle}})$	3.27 ± 0.02	3.27 ± 0.01
	$lg(E_{ankle}/eV)$	18.61 ± 0.01	18.62 ± 0.01
	$\gamma_2(E > E_{\text{ankle}})$	2.68 ± 0.01	2.63 ± 0.02
	$\lg(E_{\rm break}/eV)$	19.41 ± 0.02	
	$\gamma_3(E > E_{\rm break})$	4.2 ± 0.1	
	$\lg(E_{1/2}/\mathrm{eV})$		19.63 ± 0.02
	$\lg(W_{ m c}/{ m eV})$		0.15 ± 0.02
25	χ^2/ndof	37.8/16 = 2.7	33.7/16 = 2.3

ICRC 2013

ICRC 2013

ICRC 2017

28

ICRC 2017

29

Aab et al. PRL 2020

Aab et al. PRL 2020

Phys. Rev. Lett. 125 (2020) 121106 Phys. Rev. D102 (2020) 062005 Eur. Phys. J. C81 (2021) 966

ICRC 2021

-	· · ·	
		$\gamma_0 = 3.09 \pm 0.01$
low energy ankle	$E_{01} = (2.8 \pm 0.3 \pm 0.4) \times 10^{16} \text{ eV}$	$\gamma_1 = 2.85 \pm 0.01$
2 nd knee	$E_{12} = (1.58 \pm 0.05 \pm 0.2) \times 10^{17} \text{ eV}$	$\gamma_2 = 3.283 \pm 0.0$
ankle	$E_{23} = (5.0 \pm 0.1 \pm 0.8) \times 10^{18} \text{ eV}$	$\gamma_3 = 2.54 \pm 0.03$
instep	$E_{34} = (1.4 \pm 0.1 \pm 0.2) \times 10^{19} \text{ eV}$	$\gamma_4 = 3.03 \pm 0.05$
suppression	$E_{45} = (4.7 \pm 0.3 \pm 0.6) \times 10^{19} \text{ eV}$	$\gamma_5 = 5.3 \pm 0.3 \pm$

Suppression at ~ $5 \times 10^{19} \text{ eV} \rightarrow$ Energy losses Instep at ~ $10^{19} \text{ eV} \rightarrow$ Light to intermediate nuclei Ankle at ~ $5 \times 10^{18} \text{ eV} \rightarrow$ Hardening of the spectrum 2nd knee at ~ $2 \times 10^{17} \text{ eV} -$ End of GCR? Hint for low energy ankle at ~ 10^{17} eV

Galactic the extragalactic contributions to the energy spectrum

$I_{ m H}~(\%)$	100 (fixed)	0.0 ± 0.0
$I_{\mathrm{He}}~(\%)$		24.5 ± 3.0
$I_{ m N}~(\%)$		68.1 ± 5.0
$I_{ m Si}~(\%)$		4.9 ± 3.9
$I_{\mathrm{Fe}}~(\%)$		2.5 ± 0.2

37

PRD(2018)123018

JCAP05(2023)024

• Summary

- energy spectrum.
- analyses with increased composition sensitivity.

• Heavy nuclei are more common at higher energies before the suppression. • Improvement of acceleration mechanisms and propagation processes

• The improved precision of Auger Phase II might reveal details in future

• Summary

- energy spectrum.
- analyses with increased composition sensitivity.

• Heavy nuclei are more common at higher energies before the suppression. Improvement of acceleration mechanisms and propagation processes

• The improved precision of Auger Phase II might reveal details in future

Thank you