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• O(4) model as an effective theory for 2-flavor QCD: universality,
dimensional reduction, topological charge ∼ baryon number

• Cluster algorithm, inclusion of quark mass and baryon chemical
potential without sign problem

• Phase diagram in the chiral limit, and with light quarks:
where is the Critical Endpoint (CEP) ?
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µB = 0:

• Nf = 2: mu = md = 0: 2nd order phase transition
Nf = 3: mu = md = 0, ms physical: Tc ≃ 132 MeV [Ding et al. ’19]

2 + 1 + 1 flavors: Tc ≃ 134 MeV [Kotov et al. ’21]

• mu = md > 0 crossover
ms physical: pseudo-critical Tx ≃ 155 MeV
[Borsanyi et al. ’10, Bhattacharya et al. ’14 . . . ]
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Sign problem at µB > 0 still unsolved: p[U ] ∝ exp(−S[U ]) /∈ RI +

Conjectures on the phase diagram based on effective theories.

Here: O(4) non-linear σ-model

Assumed to be in universality class of Nf = 2 chiral QCD.
[Pisarski/Wilczek ’83]

S[~e ] =

∫

d4x

[

F 2
π

2
∂µ~e(x) · ∂µ~e(x)− ~h · ~e(x)

]

~e(x) ∈ RI 4 , |~e(x)| ≡ 1

~h external “magnetic field”
~h = ~0: global O(4) symmetry, can break spontaneously to O(3)
~h 6= ~0 adds explicit symmetry breaking, like quark masses mu = md > 0
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Local isomorphy to chiral flavor symmetry:

{ SU(2)L ⊗ SU(2)R = O(4) } −→ { SU(2)L=R = O(3) }

Same symmetry groups before and after symmetry breaking

Assume T = 1/β high enough for dimensional reduction:

S[~e ] =

∫ β

0

dtE

∫

V

d3x
[F 2

π

2
∂i~e(x) · ∂i~e(x)− ~h · ~e(x)

]

≃ βH[~e ]

3d O(4) model (with periodic b.c.) has topological sectors, π3(S
3) = Z.

• [Skyrme ’61,’62, Witten ’79, Adkins/Nappi/Witten ’83, Zahed/Brown ’86, . . . ] :

top. charge Q corresponds to baryon number B
~e(x) pion field, but in this way the model accounts for baryons.
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⇒ Baryon chem. potential µB
∧
= imaginary vacuum angle θ,

H[~e ] = · · · − µBQ[~e ] ∈ RI , Q[~e ] top. charge

Standard lattice formulation,

Slat[~e ] = −βlat

(

∑

〈x,y〉

~ex · ~ey + ~hlat ·
∑

x

~ex + µB,latQ[~e ]
)

x: lattice sites; 〈x, y〉: nearest neighbor sites

Topological charge on the lattice: geometric definition:
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Split lattice unit cubes into 6 tetrahedra; the 4 spins at the vertices
of one tetrahedron, (~ew, ~ex, ~ey, ~ez), span a spherical tetrahedron on S3

(edges e1 . . . e6: geodesics in S3).

Topological density of a tetrahedron = (normalized) volume of oriented
spherical tetrahedron, Vw,x,y,z[~e ] ∈ (−1/2, 1/2),

Q[~e ] =
1

2π2

∑

〈w,x,y,z〉

Vw,x,y,z[~e ] ∈ Z
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Implicit formulae for Vw,x,y,z[~e ] by Murakami, ’12.

Cluster algorithm: another benefit of the O(4) model as an effective theory.

Still, increasing µB causes a rapid increase in auto-correlation time τ :
this limits the range of reliable simulations to µB,lat ≤ 2.5.

τ in multi-cluster updates with respect to H and Q (L = 20, h = 0).
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I. Results in the chiral limit, h = 0

Physical units by referring to Tc = 1/βc at µB = 0 :

βc,lat = 0.9359(1) [Oevers, ’96] ⇔ Tc ≈ 132 MeV [Ding et al. ’19]

µB =
βc,lat

βc
µB,lat ≈ 124 MeV µB,lat

Simulation parameters:

µB,lat = 0, 0.1, 0.2, . . . 1.5; 2, 2.5 ⇔ µB = 0 . . . 309 MeV

Lattice volumes L3, L = 10, 12, 16, 20 (problem: huge τ)

For each parameter set: 104 confs., perfectly de-correlated

Observables: 1st and 2nd derivatives of F = −T lnZ.

7



Energy density ǫ = 〈H〉/V (left) and magnetization density

(order parameter) m = 〈| ~M |〉/V , ~M =
∑

x ~ex (right), L = 20.

Increase µB,lat at fixed β: larger ǫ, lower m,
interval of maximal slope moves to larger β ≈ βc.

µB,lat = 2.5: quasi-jumps, 1st order phase transition near-by ?

8



Top. charge density q = 〈Q〉/V

At µB = 0: q = 0 due to parity symmetry. µB > 0 enhances Q > 0.

Again: quasi-jump for µB,lat = 2.5, to be clarified by 2nd derivatives of F .
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Specific heat cV = β2

V

(

〈H2〉 − 〈H〉2
)

Peak most pronounced at µB,lat = 2 and 2.5, likely still 2nd order.
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Peak of cV hardly moves with V , extrapolation to βc simple.

For 2nd order we expect (peak height) ∝ Lα/ν; at µB,lat = 2: α/ν ≈ 0.2.
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Magnetic susceptibility χm = β2

V

(

〈 ~M2〉 − 〈| ~M |〉2
)

(L = 20)

Peak most pronounced at µB,lat ≥ 1, supports 2nd order.
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Peak of χm moves with V , extrapolation to βc consistent with other criteria.

2nd order: (peak height) ∝ Lγ/ν, γ
ν (µB,lat) ∈ [1.7 . . . 2.1]

at µB = 0 compatible with 1.970 [Engels/Fromme/Seniuch, ’03]

Strongly supports 2nd order.
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Topological susceptibility χt =
1
V

(

〈Q2〉 − 〈Q〉2
)

Peak most pronounced at µB,lat ≥ 1.5, supports 2nd order, consistent with
previous determinations of βc. Defines critical exponent x, χt(Tc) ∝ Lx/ν,
e.g. x

ν |µB,lat=0 ≃ 0.2, x
ν |µB,lat=1 ≃ 0.3
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Combine all determinations of βc,lat(µB,lat) (steepest slopes and peaks,

extrapolated V → ∞), convert to physical units: final phase diagram in the

chiral limit. Shape as expected, but no Critical Endpoint — i.e. no change to 1st

order — in the regime µB . 309 MeV and T & 106 MeV.
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II. Results at physical pion mass, h = |~h| > 0

Estimate of physical units

βc,lat ≃ 0.9359 , Tx ≃ 155 MeV

h = hlat

β4
c,lat

β4
x

= hlat (145 MeV)4

βx,lat ≈ 0.87 ambiguous, see below.

We fix h by the Gell-Mann–Oakes–Renner relation:

h = mqΣ
!
=F 2

π M2
π ≃ (92.4 MeV)2 (138 MeV)2 ⇒ hlat = 0.367

with Σ ≃ (250MeV)3, this corresponds to mq ≃ 5MeV

(results for mq ≃ 3MeV look similar)
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Growth of auto-correlation times τ is strongly alleviated by crossover:
τ does not diverge at βx, no critical slowing down.
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No interval of extraordinary slope (as L grows):
2nd order phase transition smeared out to a crossover.
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Phase diagram at finite quark mass: broad crossover region; Tx hardly
decreases up to µB = 244 MeV. No indication of a Critical Endpoint.
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Conclusions

We assume the O(4) model to be in the universality class of
2-flavor QCD in the chiral limit.

High-T dimensional reduction to 3d O(4) leads to topological
charge, identified with the baryon number.

Model can be simulated with baryon chemical potential, without
sign problem, and with a powerful cluster algorithm.

We monitor the critical line up to µB ≃ 309 MeV, Tc ≃ 106 MeV.
Tc(µB) decreases monotonically; no Critical Endpoint found, but hints
for it to be near-by.

At physical pion mass: Tx varies little with µB, crossover in some
T -interval; up to µB ≃ 244 MeV again no CEP.

[Thanks to Arturo Fernández, Miguel Nava and Uwe-Jens Wiese]
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