Conjecture about the QCD Phase Diagram

José Antonio García Hernández, Edgar López Contreras, Elías Polanco Euán, Wolfgang Bietenholz Instituto de Ciencias Nucleares

Universidad Nacional Autónoma de México

- O(4) model as an effective theory for 2-flavor QCD: universality, dimensional reduction, topological charge \sim baryon number
- Cluster algorithm, inclusion of quark mass and baryon chemical potential without sign problem
- Phase diagram in the chiral limit, and with light quarks: where is the Critical Endpoint (CEP) ?

Hypothetical QCD phase diagram:

 $\mu_B = 0$:

• $N_f = 2$: $m_u = m_d = 0$: 2^{nd} order phase transition $N_f = 3$: $m_u = m_d = 0$, $\overline{m_s}$ physical: $T_c \simeq 132 \text{ MeV}$ [Ding et al. '19] 2 + 1 + 1 flavors: $T_c \simeq 134 \text{ MeV}$ [Kotov et al. '21]

• $m_u = m_d > 0$ crossover m_s physical: pseudo-critical $T_x \simeq 155$ MeV [Borsanyi et al. '10, Bhattacharya et al. '14 ...] Sign problem at $\mu_B > 0$ still unsolved: $p[U] \propto \exp(-S[U]) \notin \mathbb{R}_+$ Conjectures on the phase diagram based on effective theories.

Here: **O(4) non-linear** *σ***-model**

Assumed to be in universality class of $N_f = 2$ chiral QCD. [Pisarski/Wilczek '83]

$$S[\vec{e}] = \int d^4x \left[\frac{F_{\pi}^2}{2} \partial_{\mu} \vec{e}(x) \cdot \partial_{\mu} \vec{e}(x) - \vec{h} \cdot \vec{e}(x) \right]$$

 $\vec{e}(x) \in \mathbb{R}^4$, $|\vec{e}(x)| \equiv 1$

 \vec{h} external "magnetic field" $\vec{h} = \vec{0}$: global O(4) symmetry, can break spontaneously to O(3) $\vec{h} \neq \vec{0}$ adds explicit symmetry breaking, like quark masses $m_u = m_d > 0$ Local isomorphy to chiral flavor symmetry:

$$\{ \operatorname{SU}(2)_{\mathrm{L}} \otimes \operatorname{SU}(2)_{\mathrm{R}} = \operatorname{O}(4) \} \longrightarrow \{ \operatorname{SU}(2)_{\mathrm{L}=\mathrm{R}} = \operatorname{O}(3) \}$$

Same symmetry groups before and after symmetry breaking Assume $T = 1/\beta$ high enough for <u>dimensional reduction</u>:

$$S[\vec{e}] = \int_0^\beta dt_{\rm E} \int_V d^3x \, \left[\frac{F_\pi^2}{2} \,\partial_i \vec{e}(x) \cdot \partial_i \vec{e}(x) - \vec{h} \cdot \vec{e}(x)\right] \simeq \beta H[\vec{e}]$$

3d O(4) model (with periodic b.c.) has topological sectors, $\pi_3(S^3) = \mathbb{Z}$.

 [Skyrme '61,'62, Witten '79, Adkins/Nappi/Witten '83, Zahed/Brown '86, ...]:
 top. charge Q corresponds to baryon number B *ē*(x) pion field, but in this way the model accounts for baryons. \Rightarrow Baryon chem. potential $\mu_B \stackrel{\wedge}{=}$ imaginary vacuum angle θ ,

 $H[\vec{e}] = \cdots - \mu_B Q[\vec{e}] \in \mathbb{R}$, $Q[\vec{e}]$ top. charge

Standard lattice formulation,

$$S_{\text{lat}}[\vec{e}] = -\beta_{\text{lat}} \left(\sum_{\langle x, y \rangle} \vec{e}_x \cdot \vec{e}_y + \vec{h}_{\text{lat}} \cdot \sum_x \vec{e}_x + \mu_{B,\text{lat}} Q[\vec{e}] \right)$$

x: lattice sites; $\langle x, y \rangle$: nearest neighbor sites

Topological charge on the lattice: geometric definition:

Split lattice unit cubes into 6 tetrahedra; the 4 spins at the vertices of one tetrahedron, $(\vec{e}_w, \vec{e}_x, \vec{e}_y, \vec{e}_z)$, span a **spherical tetrahedron** on S^3 (edges $e_1 \dots e_6$: geodesics in S^3).

Topological density of a tetrahedron = (normalized) volume of oriented spherical tetrahedron, $V_{w,x,y,z}[\vec{e}] \in (-1/2, 1/2)$,

$$Q[\vec{e}] = \frac{1}{2\pi^2} \sum_{\langle w, x, y, z \rangle} V_{w, x, y, z}[\vec{e}] \in \mathbb{Z}$$

5

Implicit formulae for $V_{w,x,y,z}[\vec{e}]$ by Murakami, '12.

Cluster algorithm: another benefit of the O(4) model as an effective theory.

Still, increasing μ_B causes a rapid increase in auto-correlation time τ : this limits the range of reliable simulations to $\mu_{B,\text{lat}} \leq 2.5$.

 τ in multi-cluster updates with respect to H and Q (L = 20, h = 0).

I. Results in the chiral limit, h = 0

Physical units by referring to $T_{\rm c}=1/\beta_{\rm c}$ at $\mu_B=0$:

 $\beta_{\rm c,lat} = 0.9359(1)$ [Oevers, '96] $\Leftrightarrow T_{\rm c} \approx 132 {\rm ~MeV}$ [Ding et al. '19]

$$\mu_B = \frac{\beta_{\rm c,lat}}{\beta_{\rm c}} \,\mu_{B,\rm lat} \approx 124 \,\,{\rm MeV} \,\,\mu_{B,\rm lat}$$

Simulation parameters:

 $\mu_{B,\text{lat}} = 0, \ 0.1, \ 0.2, \ \dots 1.5; \ 2, 2.5 \Leftrightarrow \mu_B = 0 \dots 309 \text{ MeV}$ Lattice volumes L^3 , $L = 10, \ 12, \ 16, \ 20 \text{ (problem: huge } \tau\text{)}$ For each parameter set: 10^4 confs. , perfectly de-correlated Observables: 1^{st} and 2^{nd} derivatives of $F = -T \ln Z$.

Energy density $\epsilon = \langle H \rangle / V$ (left) and magnetization density (order parameter) $m = \langle |\vec{M}| \rangle / V$, $\vec{M} = \sum_x \vec{e_x}$ (right), L = 20.

Increase $\mu_{B,\text{lat}}$ at fixed β : larger ϵ , lower m, interval of maximal slope moves to larger $\beta \approx \beta_c$.

 $\mu_{B,\text{lat}} = 2.5$: quasi-jumps, 1st order phase transition near-by ?

Top. charge density $q=\langle Q
angle/V$

At $\mu_B = 0$: q = 0 due to parity symmetry. $\mu_B > 0$ enhances Q > 0. Again: quasi-jump for $\mu_{B,lat} = 2.5$, to be clarified by 2nd derivatives of F.

Peak most pronounced at $\mu_{B,\text{lat}} = 2$ and 2.5, likely still 2nd order.

Peak of c_V hardly moves with V, extrapolation to β_c simple. For 2nd order we expect (peak height) $\propto L^{\alpha/\nu}$; at $\mu_{B,\text{lat}} = 2$: $\alpha/\nu \approx 0.2$.

Magnetic susceptibility $\chi_{\rm m} = \frac{\beta^2}{V} \left(\langle \vec{M}^2 \rangle - \langle |\vec{M}| \rangle^2 \right) \qquad (L = 20)$

Peak most pronounced at $\mu_{B, \text{lat}} \geq 1$, supports 2^{nd} order.

Peak of $\chi_{\rm m}$ moves with V, extrapolation to $\beta_{\rm c}$ consistent with other criteria. $2^{\rm nd}$ order: (peak height) $\propto L^{\gamma/\nu}$, $\frac{\gamma}{\nu}(\mu_{B,{\rm lat}}) \in [1.7...2.1]$ at $\mu_B = 0$ compatible with 1.970 [Engels/Fromme/Seniuch, '03] **Strongly supports 2**nd order.

Topological susceptibility $\chi_{t} = \frac{1}{V} \left(\langle Q^{2} \rangle - \langle Q \rangle^{2} \right)$

Peak most pronounced at $\mu_{B,\text{lat}} \ge 1.5$, supports 2nd order, consistent with previous determinations of β_{c} . Defines critical exponent x, $\chi_{\text{t}}(T_{\text{c}}) \propto L^{x/\nu}$, $e.g. \frac{x}{\nu}|_{\mu_{B,\text{lat}}=0} \simeq 0.2$, $\frac{x}{\nu}|_{\mu_{B,\text{lat}}=1} \simeq 0.3$

Combine all determinations of $\beta_{c,lat}(\mu_{B,lat})$ (steepest slopes and peaks, extrapolated $V \to \infty$), convert to physical units: final phase diagram in the chiral limit. Shape as expected, but no Critical Endpoint — *i.e.* no change to 1st order — in the regime $\mu_B \lesssim 309 \text{ MeV}$ and $T \gtrsim 106 \text{ MeV}$.

II. Results at physical pion mass, $h = |\vec{h}| > 0$

Estimate of physical units

$$\beta_{\rm c,lat} \simeq 0.9359$$
, $T_{\rm x} \simeq 155 \text{ MeV}$
 $h = h_{\rm lat} \frac{\beta_{\rm c,lat}^4}{\beta_{\rm x}^4} = h_{\rm lat} (145 \text{ MeV})^4$

 $\beta_{\rm x,lat} \approx 0.87$ ambiguous, see below.

We fix h by the Gell-Mann–Oakes–Renner relation:

$$h = m_q \Sigma \stackrel{!}{=} F_\pi^2 M_\pi^2 \simeq (92.4 \text{ MeV})^2 (138 \text{ MeV})^2 \Rightarrow h_{\text{lat}} = 0.367$$

with $\Sigma \simeq (250 \,\mathrm{MeV})^3$, this corresponds to $m_q \simeq 5 \,\mathrm{MeV}$ (results for $m_q \simeq 3 \,\mathrm{MeV}$ look similar) Growth of auto-correlation times τ is strongly alleviated by crossover: τ does not diverge at β_x , **no critical slowing down**.

Magnetic auto-correlation time au_{m}

Left: Energy density $\epsilon = \langle H \rangle / V$ hardly depends on L. Shift for $\mu_{B,\text{lat}} = 0, 1, 2$. Right: Magnetization density $m = \langle |\vec{M}| \rangle / V$ at $\mu_{B,\text{lat}} = 2$. Modest finite-size effects.

No interval of extraordinary slope (as L grows): 2^{nd} order phase transition smeared out to a crossover.

Peak washed out by mass term; located by Gaussian fits

Large-L extrapolation of c_V peak locations $\rightarrow \beta_{x,lat}$

Performed at each $\mu_{B,lat}$ to monitor the crossover.

Magnetic susceptibility χ_m at $\mu_{B,lat} = 2$. Again: peak washed out, localized by Gaussian fits. Another criterion to search β_x .

Large-L extrapolation of χ_m peak locations $\rightarrow \beta_{x,lat}$ Below values obtained from c_V ; typical for a crossover.

Phase diagram at finite quark mass: broad crossover region; T_x hardly decreases up to $\mu_B = 244 \text{ MeV}$. No indication of a Critical Endpoint.

Conclusions

We assume the O(4) model to be in the universality class of 2-flavor QCD in the chiral limit.

High-T dimensional reduction to 3d O(4) leads to topological charge, identified with the baryon number.

Model can be simulated with baryon chemical potential, without sign problem, and with a powerful cluster algorithm.

We monitor the critical line up to $\mu_B \simeq 309$ MeV, $T_c \simeq 106$ MeV. $T_c(\mu_B)$ decreases monotonically; no Critical Endpoint found, but hints for it to be near-by.

At physical pion mass: T_x varies little with μ_B , crossover in some *T*-interval; up to $\mu_B \simeq 244 \text{ MeV}$ again no CEP.

[Thanks to Arturo Fernández, Miguel Nava and Uwe-Jens Wiese]

