# On magnetized Bose-Einstein charged scalar condensate stars.

Amanda Castillo Ayón\* Aurora Pérez Martínez\* Adriel Rodríguez Concepción\* Hugo Pérez Rojas\* Gabriella Piccinelli Bocchiª Ángel Sánchezª

\*Instituto de Cibernética Matemática y Física (ICIMAF) <sup>a</sup>Universidad Autónoma de México (UNAM)



## Motivation



Condensate of pions, superfluid states of protons, neutrons or pions NOT EXCLUDED

Chavanis, P.H., Harko, Tiberiu. 2012, Phys. Rev. D, 86(6), 064011

Bose-Einstein condensate stars (BECs)

- CO → interacting gas of bosons.
   sustains them against gravitational collapse
  - BECs can be considered as an alternative model of neutron star nuclei if we assume that this core is composed exclusively of bosonized nuclear matter.



- Revisited the condensation of a magnetized scalar charged boson gas for low temperature regime and an arbitrary value of magnetic field.
- Reproduce the diffuse condensation.
- Reproduce the two step condensation previously obtained for non-relativistic bosons.

## Bose-Einstein condensation

B = 0

Critical temperature  $T_c$  (different from zero) from wich condensation will start such that  $\mu(T_c) = \varepsilon$ .

 $B \neq 0$ 

Finite fraction of the total particle density in the ground and in states in the neighborhood at some temperature T > 0No critical temperature defined  $\longrightarrow$  Diffuse phase transition

- On Bose-Einstein condensation in any dimensión, H. Perez Rojas Physics Letters A 234 (1997) 13-19.
- Condensation may occur in a constant magnetic field, H. Perez Rojas Physics Letters B 379 (1996) 148-152.
- Quintero Angulo, A. Pérez Martínez and H. Pérez Rojas, Phys . Rev. C 96 (2017)045810.

Increase of particles in the state with zero energy

Strong criterion

#### **Thermodynamic potential**

Constant and uniform magnetic field in the abscissa direction x

 $B_c = 2.08 \times 10^{18} G$ 

$$\Omega(T, \mu, B) = -\frac{eB}{4\pi^2 \beta} \sum_{n=0}^{\infty} \int_{-\infty}^{\infty} dp_3 \ln \left| \left( 1 - e^{-\beta(\varepsilon - \mu)} \right) (1 - e^{-\beta(\varepsilon + \mu)}) \right| - \frac{eB}{4\pi^2} \sum_{n=0}^{\infty} \int_{-\infty}^{\infty} dp_3 e^{-\beta(\varepsilon - \mu)} \int_{-\infty}^{\infty} dp_3 e^{-$$

*q*: boson charge

 $\beta$ : inverse temperature

 $\varepsilon$ : particle energy spectrum

 $\mu$ : chemical potential

 $-\overline{T}$ 

• 
$$\varepsilon_n(p_{||}) = \sqrt{m^2 + p_{||}^2 + 2eB(n + 1/2)}$$

•  $b = \frac{B}{B_c} = \frac{qB}{m^2}$ 

#### Vacuum energy

$$\Omega_{vac}(B) = -\frac{1}{4\pi^2} \int_0^\infty \frac{ds}{s^3} ((eBs) \, coth(eBs) - 1 - \frac{(eBs)^2}{3}) \, e^{-m^2 s}$$

Vacuum energy

$$\Omega_{vac}(B) = -\frac{1}{4\pi^2} \int_0^\infty \frac{ds}{s^3} ((eBs) \, coth(eBs) - 1 - \frac{(eBs)^2}{3}) \, e^{-m^2 s}$$



A. Ayala, M. Loewe, J. C. Rojas and C. Villavicencio, arXiv : hep ph ], Oct2012.

## **Thermodynamic properties**

#### **Entropy density**

Particle density 
$$N = N_0 + N_n = -\left(\frac{\partial\Omega}{\partial\mu}\right)_{T,B} \qquad S = -\left(\frac{\partial\Omega}{\partial T}\right)_{B,\mu}$$
$$\frac{N(t,z,b)}{m^3} = -\frac{b(1+b)^{1/4}t^{1/2}}{2\pi^2} \left[Li_{1/2}(z) + \sum_{n=1}^{\infty} \frac{z^n}{n^{3/2}} \frac{n}{e^{\frac{nb\sqrt{1+b}}{t}} - 1}\right]$$

### **Thermodynamic properties**

#### **Entropy density**

Particle density 
$$N = N_0 + N_n = -\left(\frac{\partial\Omega}{\partial\mu}\right)_{T,B}$$
  $S = -\left(\frac{\partial\Omega}{\partial T}\right)_{B,\mu}$   
$$\frac{N(t,z,b)}{m^3} = -\frac{b(1+b)^{1/4}t^{1/2}}{2\pi^2} \left[Li_{1/2}(z) + \sum_{n=1}^{\infty} \frac{z^n}{n^{3/2}} \frac{n}{e^{\frac{nb\sqrt{1+b}}{t}} - 1}\right]$$
  
Energy density  $E = \Omega + \mu N + TS$ 

 $\frac{E(t,z,b)}{m^4} = \frac{b\sqrt{m_B t}}{3} \left[ m_B L i_{1/2}(z) + \frac{t}{2} L i_{1/2}(z) \right] + \sum_{n=1}^{\infty} \frac{\sqrt{t} b z^n}{3}$ 

## **Thermodynamic properties**

#### **Entropy density**

Particle density 
$$N = N_0 + N_n = -\left(\frac{\partial\Omega}{\partial\mu}\right)_{T,B}$$
  $S = -\left(\frac{\partial\Omega}{\partial T}\right)_{B,\mu}$   
$$\frac{N(t,z,b)}{m^3} = -\frac{b(1+b)^{1/4}t^{1/2}}{2\pi^2} \left[Li_{1/2}(z) + \sum_{n=1}^{\infty} \frac{z^n}{n^{3/2}} \frac{n}{e^{\frac{nb\sqrt{1+b}}{t}} - 1}\right]$$
  
Energy density  $E = \Omega + \mu N + TS$ 

 $\frac{E(t,z,b)}{m^4} = \frac{b\sqrt{m_B t}}{(2\pi)^{\frac{3}{2}}} \Big[ m_B Li_{1/2}(z) + \frac{t}{2} Li_{1/2}(z) \Big] + \sum_{n=1}^{\infty} \frac{\sqrt{t}bz^n}{(2\pi n)^{\frac{3}{2}}\sqrt{m_B}(e^{n\gamma}-1)^2}$ 

Specific heat per volume

$$C_{v} = \left(\frac{\partial E}{\partial T}\right)_{B,N} = \left(\frac{\partial E}{\partial T}\right)_{B,\mu} + \left(\frac{\partial E}{\partial \mu}\right)_{T,B} \left(\frac{\partial \mu}{\partial T}\right)_{B,N} \qquad \left(\frac{\partial \mu}{\partial T}\right)_{B,N} = \frac{\partial y}{\partial x}$$



**Figure 1:** Specific heat  $C_v$  /N as a function of the temperature in the low temperature regime, at a constant density.

\*R. L. Delgado, P. Bargueño, and F. Sols, DOI: 10.1103/PhysRevE.86.031102, September 2012.

b = 0.05 and

b = 0.5.



#### Magnetic properties of a charged boson gas

Magnetization

Magnetic susceptibility

$$M = -\left(\frac{\partial\Omega}{\partial B}\right)_{T,\mu}$$

$$\chi = \left(\frac{\partial M}{\partial B}\right)_{T,\mu}$$

$$M_0(t,z,b) = \frac{\sqrt{t}}{8\sqrt{2}(1+b)^{3/4}\pi^{3/2}} \left(-2b\sqrt{1+b}Li_{1/2}(z) + (4+5b)tLi_{3/2}(z)\right)$$

$$M_{0}(t,z,b) = -\frac{N_{LLL}}{2} \sqrt{\frac{\pi}{2(1+b)}}$$

$$M_{n}(t,z,b) = -\frac{t^{3/2}}{8\sqrt{2}(1+b)^{3/4}\pi^{3/2}} \left(2\sqrt{1+b}Li_{3/2}(z) - tLi_{5/2}(z)\right)$$





**Figure 3:** The charged boson magnetization as a function of temperature. The LLL is the term that contributes most to the magnetization. Magnetization is negative at low temperatures and increases to positive values as temperature rises.

#### **Equation of State**



**Figure 3:** Charged scalar boson gas pressure as a function of temperature. At low temperature regime we can observe an anisotropy in the temperatures. The difference between the pressures is negligible at higher values of T.

# Summary

- We reproduce with a relativistic spectrum (in case of low temperature regime) the results already obtained from Bargueño\* (non-relativistic spectrum).
- We confirm the two step condensation through the analisis of the population of levels when temperature is dimished with a fixed number of particles. The first step is the accumulation of the particles in the zeroth Landau level ( $n = 0, p_3 \neq 0$ ) and the 2nd step is the accumulation of a macroscopic number of particles around the ground state ( $n = 0, p_3 = 0$ ).
- We observe the condensation steps in the specific heat with the emergence of two plateaus, one for  $C_v = 0.5$  (1st step) and the other one for  $C_v = 0$  (2nd step) that shows the diffuse transition to the condensation for a charged scalar boson gas in presence of a magnetic field.

# Perspective

• Study the macrophysics by using the EoS taking into account the interaction between bosons and the General Relativity to get the observables, mass and radius.