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Kibble Mechanism

It is generally assumed that phase transitions
occurred in the early universe at the late stages of
inflation. These transitions could have possibly
formed topological defects.

Examples:
» (M) # | = Domain wall
» 711(M) # | = Vortex (2d), cosmic strings (3d)
» m(M) # | = Monopole

M: Vacuum manifold.
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Cosmic Strings

>

oK

2-dimensional vortices stacked on top of each other,
forming a cosmic string in three dimensions
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U(1)s_, exact global symmetry

In the Standard Model U(1)g_; is an exact global
symmetry. B baryon number, L lepton number.

This is strange, an exact symmetry is only natural
when it is local.

We promote U(1)g_; to a local symmetry that
couples to the hypercharge.
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Gauge symmetry

We introduce a new gauge coupling #’ and define a
new charge as

/

h
Y'=2hY + (B~ L),
h, h" gauge couplings.

We take the gauge group to be U(1)ys and we call
the gauge field A, .

6/1



Gauge Anomaly

In each vertex the quarks of one generation

contribute with B = 4, and leptons with L = 3.

B—L+£0.
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Gauge anomaly. It is cured by adding a vg (L =1)
to each generation.

Since the neutrinos have mass, it is natural to
introduce a mechanism to give mass to the
neutrinos.

We can introduce masses to v, Vg, normally
through the Higgs mechanism.
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To add a mass term solely for vg, independently of
v, we add a non-standard Higgs field y € C

f,.vaxClvg + c.c.,

where f,. is a Yukawa coupling.

To preserve gauge invariance, the field x must have
a charge B — L =2.
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We generate the Majorana-type mass with the Higgs
mechanism using a non-standard Higgs field y € C .

We denote the vacuum expectation value of x as v'.

X gives a Majorana-type mass to the right-handed
neutrino M = f,,v'.
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X Is added to the Lagrangian with a quartic
potential (power counting renormalizable)

m/2 /

A
V/:_* - * 2.
2xx+4WX)

It is natural to include (normalizable, gauge
invariant)

K
“ofdy*y.
5P exXX

We assume that v/ > v and f,, sufficiently large.
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Lagrangian

1 m? A A
= Z(D"®)'D,® — —dTd — Z(dTd)? — Zv*
£ = 5(D')'Do L(010) — 2y
1 m/2 )\/ )\/
- du *d o o 2_ l4
+2( X) dux 5 XX 4(X X) 4
__q)Tq)X Y — R Va2 — ]:MVJT_'W’

2 2"

® = (¢4, ¢0)" € C?
> D,& = (9, + ihA,)®
> d,x = (0, +inNA,)x
> F.=0,A —0,A,
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For the potential to be bounded from below, we
need

A>0, N>0 r2<AN,

and for spontaneous symmetry breaking to occur

m? = —kv? — \v? <0,

m? = —kv? — Nv?2 <0.

(Tree level analysis)
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Equations of motion

D'D,® = —m?d — \(dTd)d — kdx*y
d"dyx = —m?x = N(xX'x)x — kx®'o
h
P F\, = _’5 (D,®)d — &(D,d)]
i

_? [(dl/X)*X - X*(dz/X)]
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Ansatz

The Lagrangian has a U(1)y: symmetry which can
“spontaneously break” down to 1.

M =U(1)y /1 =U(1) = m1(U(1)) = Z = cosmic
strings.

We only consider the component ¢q of the Higgs
field . Cylindrically symmetric ansatz (const. in z)

¢O(ra90) — ¢(r)
x(r.@) = &(r)e™?, n,n’ winding numbers
A - A0,

r
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Equations of motion

P+ %a@ (”+ ”a) 6 — mP — A — k€ =0
o6+ Loe - %5 P NE — R =0

0%a — %&a — h(n + ha)¢? — W (n' + Ha)¢? = 0.
Boundary conditions (n, n" # 0)
o0)=0,  lim o(r) =
§0)=0.  lim&(r) =

a(0) =0, lim a(r)=—

n
r—00 h h
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Boundary value problem, numerical solutions with
the damped Newton method.

Solutions uniquely defined by inserting v, v/, A, X,
h, W' nand n'.

We choose v/ > v.

vPhYs — 246 GeV is used to convert all dim'less
variables to physical units.

We display the profile radius r, where r =1
corresponds in physical units to

v - 0.0008 fm.
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v=05+Vv=2n=-5n=-1 h=5 K =1,
A= X =1. This is an example from the SO(10)
GUT [Buchmiiller/Greub/Minkowski, '91].
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By integrating over the area the energy density, we
find that the string tension is of the order of

k
11~ 10 GeV? = 10% “&.
PC

Therefore
Gu~ 1072,

_ 1
where G = (1.2x100 GeV)?*

The LIGO/Virgo collaboration set constraints to the
string tension

Gu<4x107%.
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Summary

In this BSM model, motivated from the exactness of
U(1)p_., we added

» A new Abelian gauge field A,
» A right-handed neutrino vg
» A new Higgs field y € C

A non-standard type of cosmic strings is possible.
Overshoot and coaxial string solutions.

At large distances, they do not affect known physics.
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