

Search for LFV $\tau \rightarrow \ell \alpha$ process in 1x1-prong topology using a novel technique at Belle II

Johan A. Colorado Caicedo and Eduard De La Cruz Burelo Cinvestav

> Michel H. Villanueva Brookhaven National Laboratory

XV Latin American Symposium on High Energy Physics, Nov 04, 2024 - Cinvestav, Mexico City

Overview

- Motivation
- State-of-the-art
- Search strategy
- Sensitivity study
- Data/MC control channel

Motivation

- New invisible NPGB
- Could potentially solve several discrepancies in the SM
 - Mass structure of charged leptons
 - o Neutrino oscillations
 - o Strong CP problem
- DM candidate

State-of-the-art

Channel	Belle II (3x1 topology) UL (x10 ⁻⁴)
Electron	(1.96 – 17.4)
Muon	(1.21 – 21.2)

Phys. Rev. Lett. 130, 181803-Belle II

The standard model of particle physics successfully describes the electromagnetic, weak, and strong interactions and classifies all known elementary particles. However, phenomena such as neutrino oscillations, longstanding discrepancies between expectations and observations such as the muon magnetic-moment anomaly, and indirect evidence of dark matter clearly indicate that the standard model is incomplete. Many extensions of the standard model that attempt to incorporate these phenomena require new bosons that are candidates for dark matter or that explain the muon's anomalous magnetic moment [1].

Decays of τ leptons into final states involving light, beyond-the-standard-model bosons that are not directly detectable (invisible) are predicted in models with, e.g., axionlike particles [2-5]. These bosons are collectively referred to as α in this work. A direct search in $\tau^- \rightarrow \ell^- \alpha$, where ℓ^- indicates e^- or μ^- , can probe theories beyond the standard model with high sensitivity (charge-conjugated decays are implied throughout). This process was previously searched for by the MARK III [6] and ARGUS [7] collaborations. The current best upper limits on the $\tau^- \rightarrow$ $\ell^{-\alpha}$ branching fractions, relative to the corresponding standard-model leptonic decays, are $\mathcal{B}(\tau^- \rightarrow e^- \alpha)/$ $\mathcal{B}(\tau^- \to e^- \bar{\nu}_e \nu_r) < (6-36) \times 10^{-3}$ and $\mathcal{B}(\tau^- \to \mu^- \alpha)/2$ $\mathcal{B}(\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau) < (3-34) \times 10^{-3}$ at the 95% confidence level (C.L.), where the range indicates their dependence on the α mass in the (0–1.6) GeV/ c^2 [7] range.

Lepton Alpha search: Reconstruction

- **Signal side:** τ decay into ℓ +*invisible*
- **Tag side:** τ decay into π +*neutrino*

Event requirements and selection cuts

Track selection

- Originated from the interaction point (IP):
 - |dz| < 0.05 m and |dr| < 0.01 m
 - good tracks = 2

Gamma list

- -0.8660 < cosTheta < 0.9563 (in the CDC acceptance)
- E > 0.2 GeV
- clusterNHits > 1.5
- All photons with efficiency correction -PhotonEfficiencyDataMCRatio Run1MC15rd Ap ri12024

π 0's list

- same as gammas
- 0.115 < M < 0.152
- Correct the efficiency is a pending task

Electron channel

- signal side: $\tau^{\pm} \rightarrow e^{\pm} + \alpha$
 - $pid_BDT_e > 0.9$
 - $N_{\gamma}^{sig} = 0$
 - $N_{\pi 0}^{sig} = 0$

Muon channel

- signal side: $\tau^{\pm} \rightarrow \mu^{\pm} + \alpha$ •
 - $\begin{array}{l} muonID_noSVD > 0.9 \\ N_{\gamma}^{sig} = 0 \end{array}$

 - $N_{\pi_0}^{sig} = 0$

tag side: $\begin{array}{l} pionID > 0.9 \\ N_{\gamma}^{tag} = 0 \end{array}$

 $N_{\pi_0}^{tag} = 0$

tag side: pionID > 0.9 $N_{\gamma}^{tag} = 0$ $N_{\pi_0}^{tag} = 0$

Mmin and Mmax variables

"Measuring masses in semi-invisible final states at electron-positron colliders" Qian-Fei Xiang, Xiao-Jun Bi, Qi-Shu Yan, Peng-Fei Yin, and Zhao-Huan Yu

PhysRevD.95.075037

 $M_{min}^{2} = \left(\sqrt{s}\right)^{2} \begin{bmatrix} \frac{-B_{0} - \sqrt{B_{0}^{2} - 4A_{0}D_{0}}}{2A_{0}} \end{bmatrix}, \quad A_{1} = |\mathbf{b}|^{2}, \\ A_{2} = |\mathbf{a}|^{2},$ "New method for beyond the Standard Model invisible particle searches in tau lepton decays" $A_3 = 2(\mathbf{a} \cdot \mathbf{b}),$ E. De La Cruz-Burelo, A. De Yta-Hernandez, and M. Hernandez-Villanueva $M_{max}^{2} = \left(\sqrt{s}\right)^{2} \begin{pmatrix} -B_{0} + \sqrt{B_{0}^{2} - 4A_{0}D_{0}} \\ \hline 2A_{0} \end{pmatrix}, \quad \begin{array}{c} B_{1} = 2(\mathbf{b} \cdot \mathbf{H}), \\ B_{2} = 2(\mathbf{a} \cdot \mathbf{H}), \\ C_{1} = 4|\mathbf{a} \times \mathbf{b}|^{2}, \end{array}$ Phys. Rev. D 102, 115001 "Measurement of the mass of the tau lepton in semi-invisible $D_1 = \mathbf{H} \cdot \mathbf{H} - 4|\mathbf{a} \times \mathbf{b}|^2 \left(\frac{1}{2} - z_a\right)^2.$ final states in the Belle II collaboration" J. A. Colorado-Caicedo BELLE2-MTHESIS-2023-007 $A_0 = A_1$ $B_0 = -B_1 + C_1 - (2A_1 + A_3)\mu_{\tau}^2$ $\mathbf{H} \equiv \left(z_b^2 - z_b - |\mathbf{b}|^2 - 2\mathbf{a} \cdot \mathbf{b}\right) \mathbf{a} + \left(z_b^2 - z_b + |\mathbf{a}|^2\right) \mathbf{b},$ $C_0 = (A_1 + A_2 + A_3)\mu_{\tau}^4 + (B_1 + B_2)\mu_{\tau}^2 + D_1.$ $h_a \equiv \sum_{i=0}^n Y_{ai}$ $h_b \equiv \sum_{i=0}^n Y_{ai}$

Mmin and Mmax variables

Selection cuts based on Simulated Annealing

We optimized with $\tau \rightarrow \ell(e,\mu)\nu\nu$ as our "signal", due to the lack of a precise model for the decay $\tau \rightarrow \ell \alpha$.

- 10 variables were used to extract the best cuts using the following FOM

$$\frac{N_{sig}}{\sqrt{N_{sig} + 100(N_{bkg})}} \longrightarrow$$
 Purity-focused optimization*

Selection cuts (e-channel)

Selection cuts (µ-channel)

Mmin and Mmax Distributions (e-channel) - MC15rd

Mmin and Mmax Distributions (µ-channel) - MC15rd

2D distributions (e-channel)

2D distributions (μ-channel)

Upper Limit Estimation

We used the following PDF

$$F(x,y) = \frac{\epsilon_{\alpha}}{\epsilon_{l\nu\nu}} \times R \times f_{\alpha}(x,y) + N_{SM} \times f_{SM}(x,y) + N_{bkg} \times f_{bkg}(x,y)$$

where $R \equiv \frac{Br(\tau \to l\alpha)}{Br(\tau \to l\nu\nu)} = \frac{\epsilon_{SM}}{\epsilon_{\alpha}} \frac{N_{\alpha}}{N_{SM}}$, $N_{bkg} = N_{\tau bkg} + N_{other}$ and $f_{bkg}(x,y)$ is constructed with the histogram of the remaining tau decays and the remaining background (qqbar, lowmulti, etc.). We determined upper limits with the asymptotic

CLs technique, implemented in the RooStats package.

UL estimation

2D Method - Luminosity scaled to 362/fb

M_{α} [GeV/c ²]	UL at 95% CL* (×10 ⁻³)
0.0	0.748
0.5	1.113
0.7	1.268
1.0	1.370
1.2	1.300
1.4	1.035
1.6	0.533

	UL at 95% CL*
GeV/c^2	$(\times 10^{-3})$
0.0	0.685
0.5	0.903
0.7	1.043
1.0	1.148
1.2	1.139
1.4	0.891
1.6	0.485

UL in the branching ratio $(Br(\tau \rightarrow \ell \alpha))$

Channel	Belle II (3x1) – 62.8/fb (x10 ⁻⁴)	Belle II (1 x1) – 362/fb (x10 ⁻⁴)
Electron	(1.96 – 17.4)	(0.9 - 2.4)
Muon	(1.21 – 21.2)	(0.8 - 2.6)

Data/MC using a control channel

Control channel

Using the same selection criteria from the original channels in the analysis, except by

	signal side: $\tau^{\pm} \rightarrow \rho^{\pm} \nu_{\tau}$ • pionID > 0.9 • $N_{\gamma}^{sig} \leq 2$ • $N_{\pi^0}^{sig} = 1$
•	tag side: $\tau^{\pm} \rightarrow \pi^{\pm} \nu_{\tau}$
•	tag side: $\tau^{\pm} \rightarrow \pi^{\pm} \nu_{\tau}$ • pionID > 0.9
•	tag side: $\tau^{\pm} \rightarrow \pi^{\pm} \nu_{\tau}$ • pion/D > 0.9 • $N_{\tau}^{tag} = 0$

Data/MC comparison

Electron case

Muon case

LIII Total MC Belle II $\tau \to \pi \pi^0 \nu$ \Box $\tau \tau$ (bkg) ♦ Data Simulation: $\int \mathcal{L} dt = 15 \text{ fb}^{-1}$ 2000 -Background 17501500areliminary Counts/0.01 1000 750500250100,000 0,000,000,000,0000000 Data/MC 0.8 1.0 0.4 0.6 1.2 $M_{\pi\pi^0} \left[GeV/c^2 \right]$

Note: Applying corrections

- π^0
- *π*ID
- Triggers

Data/MC comparison

Electron case

Muon case

Data/MC comparison

Electron case

Muon case

Summary

- Our results (w/o systematics) are more restrictive than previous Belle II results.
 - ULs on Br are arranged in $(0.9 2.4)x10^{-4}$ and $(0.8 2.6)x10^{-4}$ for the electron and muon channels respectively.
- The Data/MC comparison was made in a control channel.
 - A good agreement is observed in the Data/MC (shape).

Backup

Differences between approaches

Belle

- A data luminosity of 792/fb is used
- 3 different tags are used (1-prong (leptonic, hadronic) + 3-prong).
- The pseudo-rest frame method is used as a discriminant variable.
- UL computed using likelihood fits 10K Toy MC
- The POI is the number of signal events

$$\mathcal{B}(\tau \to \ell \alpha) = \frac{N_s}{2N_{\tau\tau}\epsilon}$$

This study

- A pseudo-data luminosity of 362/fb is used
- Only 1-prong is used as tag
- 2D method (Mmin2, Mmax2)
- Asymptotic CLs is used to compute the ULs
- The POI is the ratio of branching fractions

As Belle did ...

In order to do a comparison, the PDF was modified. Now, the number of signal events is set as POI, 10K pseudo-experiments were generated and POI is extracted from the fits. A gaussian UL at 95% C.L was estimated.

UL at 95% C.L. using Toy MC

Kinematic constraints

 $X \overline{X} \rightarrow (h_a + N_1)(h_b + N_2)$

At CMS energy \sqrt{s}

$$p_{a} = (E_{a}, \vec{p}_{a})$$

$$p_{b} = (E_{b}, \vec{p}_{b})$$

$$p_{1} = (E_{1}, \vec{p}_{1})$$

$$p_{2} = (E_{2}, \vec{p}_{2})$$

The kinematic equations: $q^{\mu} = p_a^{\mu} + p_b^{\mu} + p_1^{\mu} + p_2^{\mu}, \ \mu = 0, 1, 2, 3$ $p_{1,2}^2 = m_{1,2}^2$ $(p_a + p_1)^2 = (p_b + p_1)^2 = m_x^2$

After some algebra:

$$\begin{array}{l} A_1(\mu_X^2 - \mu_1^2)^2 + A_2(\mu_X^2 - \mu_2^2)^2 \\ + A_3(\mu_X^2 - \mu_1^2)(\mu_X^2 - \mu_2^2) \\ + B_1(\mu_X^2 - \mu_1^2) + B_2(\mu_X^2 - \mu_2^2) \\ + C_1\mu_1^2 + D_1 \leqslant 0 \end{array}$$

 μ_i is the normalized mass of the i-th particle.

$$\begin{split} A_1 &= |\mathbf{b}|^2, \\ A_2 &= |\mathbf{a}|^2, \\ A_3 &= 2(\mathbf{a} \cdot \mathbf{b}), \\ \Rightarrow & B_1 &= 2(\mathbf{b} \cdot \mathbf{H}), \\ B_2 &= 2(\mathbf{a} \cdot \mathbf{H}), \\ & C_1 &= 4|\mathbf{a} \times \mathbf{b}|^2, \\ & D_1 &= \mathbf{H} \cdot \mathbf{H} - 4|\mathbf{a} \times \mathbf{b}|^2 \Big(\frac{1}{2} - z_a\Big)^2. \\ & \mathbf{H} &\equiv \Big(z_b^2 - z_b - |\mathbf{b}|^2 - 2\mathbf{a} \cdot \mathbf{b}\Big) \mathbf{a} + \Big(z_a^2 - z_a + |\mathbf{a}|^2\Big) \mathbf{b}. \end{split}$$

We summarized all the available kinematic information of the process

Brazilian plots e-channel

Brazilian plots μ -channel

Toy MC POI distribution

-8000

Toy MC POI distribution

350

300

-4000

Skim study

After apply the optimization cuts and *pionID09* as wp. Comparing the different efficiencies without and with the skims

	$\tau \rightarrow e \alpha$ search		$\tau \rightarrow \mu \alpha$ search	
	No skim	TauGeneric skim	No skim	TauGeneric skim
Samples	Efficiencies (%)		Efficiencies (%)	
$m_{\alpha} = 0.0$	8.16	7.96	14.31	14.29
$m_{\alpha} = 0.5$	8.56	8.44	14.55	14.54
$m_{\alpha} = 0.7$	8.52	8.46	13.89	13.88
$m_{\alpha} = 1.0$	8.49	8.44	12.28	12.21
$m_{\alpha} = 1.2$	8.32	8.27	10.42	10.34
$m_{\alpha} = 1.4$	7.73	7.69	9.25	9.18
$m_{\alpha} = 1.6$	5.84	5.80	5.36	5.30
$\tau^+\tau^- \rightarrow e\nu\nu, \pi\nu$	6.80	6.75	-	-
$\tau^+\tau^- \rightarrow \mu \nu \nu, \pi \nu$	-	-	9.82	9.79

Event Reconstruction

- Signal (New 10M events MC15rd):
 - $\tau \rightarrow e + \alpha$: sig_mcPDG = \mp 11, genMotherPDG = \mp 15, tag_mcPDG = \mp 211
 - $\tau \rightarrow \mu + \alpha$: sig_mcPDG = ∓ 13 , genMotherPDG = ∓ 15 , tag_mcPDG = ∓ 211

• Background:

MC samples	Luminosity (1/fb)	
ττ	1444	
u(u)	1444	
d(d)	1444	
s(s)	1444	
c(c)	1444	
Charged	1444	
Mixed	1444	
Low multiplicity		
$\mu\mu(\gamma)$	1444	
$ee(\gamma)$	36.1	
ееµµ	361.0	
eeee	361.0	
eekk	361.0	
еелл	361.0	
eepp	361.0	

