Nicolás Pérez Julve

nicolas.perezj@usm.cl

4 november 2024

• In the SM, three families of fermions groups in doublets of $SU(2)_L$:

$$Q_{Lj} = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} c_L \\ s_L \end{pmatrix}, \begin{pmatrix} t_L \\ b_L \end{pmatrix}$$
$$l_{jL} = \begin{pmatrix} e_L \\ \nu_e \end{pmatrix}, \begin{pmatrix} \mu_L \\ \nu_\mu \end{pmatrix}, \begin{pmatrix} \tau_L \\ \nu_\tau \end{pmatrix}$$

• Right-handed quarks and leptons are $SU(2)_L$ singlets.

The flavour structure of SM

• After EWSB, Yukawa couplings would give mass to fermions:

 $Y_{ij}\overline{\Psi}_{iL}H\Psi_{jR}$

- But the masses have strong hierarchy!! $m_1 < m_2 < m_3$.
- And neutrinos are only left-handed!!

Ref. arXiv:2206.13449

New particle content \longrightarrow new neutrino mass matrix:

$$egin{pmatrix} \overline{
u}_L & \overline{
u}_R^c \end{pmatrix} egin{pmatrix} 0 & m^D \ (m^D)^T & M_R \end{pmatrix} egin{pmatrix}
u_L^c \
u_R^c \
u_R \end{pmatrix}$$

This neutrino mass matrix can be diagonalized as follows (assuming $M_R >> m^D$):

$$m^{\nu} = -m^D M_R^{-1} (m^D)^T$$

where m^{ν} is the light active neutrino mass matrix.

Seesaw mechanism main feature

The effective left-handed Majorana mass m^{ν} is naturally suppressed by the heavy scale of M_R , this is the main feature of *seesaw* mechanism, as M_R grow up m^{ν} decrease.

Ref. arXiv:2305.00994

Tree and loop seesaw models

1 loop radiative seesaw mechanism (Scotogenic Model)

$$(\mathcal{M}_{\nu})_{ij} = \sum_{k} \frac{h_{ik} h_{jk} M_k}{16\pi^2} \left[\frac{m_R^2}{m_R^2 - M_k^2} \ln \frac{m_R^2}{M_k^2} - \frac{m_I^2}{m_I^2 - M_k^2} \ln \frac{m_I^2}{M_k^2} \right]$$

Ref. arXiv:hep-ph/0601225

6/25

We propose a model with radiative linear seesaw. In the basis (ν_L , ν_R^C , N_R^C), the neutrino mass matrix is:

$$M_{\nu} = \begin{pmatrix} 0_{3\times3} & \boldsymbol{\varepsilon} & \boldsymbol{m} \\ \boldsymbol{\varepsilon}^{T} & 0_{2\times2} & \boldsymbol{M} \\ \boldsymbol{m}^{T} & \boldsymbol{M}^{T} & 0_{2\times2} \end{pmatrix},$$

- The Lepton numbers of neutral fields are $L(v_L) = L(v_R) = -L(N_r) = 1$
- *e* is a small submatrix in two realizations: 1-loop (Model 1) and 2-loop (Model 2).

Models of Radiative Linear Seesaw with Electrically Charged Mediators: **Particle content**

• Model 1 and 2 have two $SU(2)_L$ doublet:

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}, \quad \eta = \begin{pmatrix} \eta^+ \\ \eta^0 \end{pmatrix}$$

- Singlet scalars ρ , ξ , χ , S_1^{\pm} and S_2^{\pm}
- Model 2 have new $SU(2)_L$ singlet scalar σ
- Vector-like leptons E_i (i = 1, 2, 3)

 $SU(3)_C \times SU(2)_L \times U(1)_Y \times \mathbb{Z}_2 \times \mathbb{Z}_4$ $\downarrow v_{\xi}, v_{\chi}$ $SU(3)_C \times SU(2)_L \times U(1)_Y \times \mathbb{Z}_2$ $\downarrow v$ $SU(3)_C \times U(1)_{\text{em}} \times \mathbb{Z}_2$

- $SU(2)_L$ singlet scalars ξ and χ breaks $Z_2 \times Z_4$
- *v* is the usual EWSB vev
- \widetilde{Z}_2 is preserved

- $SU(2)_L$ singlet scalars ξ and χ breaks $Z_2 \times Z_4$
- *v* is the usual EWSB vev

•
$$Z_2^{(2)} \times \widetilde{Z}_2$$
 is preserved

Models of Radiative Linear Seesaw with Electrically Charged Mediators: **Neutrino masses**

$$m_{\nu} \sim \begin{cases} \frac{\lambda y^3 v^2 \tilde{f} m_E}{16\pi^2 m_S^2 M} & \text{for the one loop model} \\ \\ \frac{\lambda^2 y^4 v^2 m_E^2}{256\pi^4 m_S^2 M} & \text{for the two loop model.} \end{cases}$$

- Model 1: $M \sim \mathcal{O}(10^3)$ TeV $\rightarrow m_{\nu} \sim 50$ meV
- Model 2: $M \sim \mathcal{O}(1)$ TeV $\rightarrow m_{\nu} \sim 50$ meV

Models of Radiative Linear Seesaw with Electrically Charged Mediators: **muon g-2 anomaly contribution**

 $\begin{array}{ll} m_{H_1} \approx 10164, 1\,{\rm GeV} & m_{H_2} \approx 3782, 1\,{\rm GeV} & m_{A_1} \approx 5860, 1\,{\rm GeV} \\ m_{A_2} \approx 3781, 9\,{\rm GeV} & m_{E_2} \approx 625\,{\rm GeV} \end{array}$

$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = (2,49 \pm 0,48) \times 10^{-9}$$

- Scalar Dark Matter scenario
- CP-odd physical state from ρ and η mixing.

16/25

Models of Radiative Linear Seesaw with Electrically Charged Mediators: **cLFV**: $\mu \rightarrow e\gamma$

- $\mu \rightarrow e\gamma$ contributions with ν and *N* in internal line.
- The model fits $Br(\mu \rightarrow e\gamma)$ limit. W W 10^{-14} ν , N 10-5 10^{-17} • $R = \frac{1}{\sqrt{2}} m M^{-1}$ 10-20 10-7 10-23 $Br(\mu \rightarrow e\gamma)$ 10⁻⁹ (¹₄ 10-26 10-11 10-29 10-32 10-13 10-35 10^{-16} 10^{-14} 10^{-12} 10^{-10} 10-8 10^{-6} Reul

- Radiative linear seesaw \rightarrow dirac submatrix at one and two loop level
- Electrically charged mediators
- \tilde{Z}_2 preserved guarantees DM stability
- Successfully comply constraints $\rightarrow (g-2)_{\mu}, \Omega h^2$, cLFV

This presentation is based in "Models of Radiative Linear Seesaw With Electrically Charged Mediators", in collaboration with A. E. Cárcamo Hernández, Yocelyne Hidalgo Velásquez, Sergey Kovalenko and Iván Schmidt.

Models of Radiative Linear Seesaw with Electrically Charged Mediators: **Charged leptons mass matrix**

Models of Radiative Linear Seesaw with Electrically Charged Mediators: **Charged leptons mass matrix**

$$(M_l)_{ij} = \sum_{k=1}^{3} \frac{y_{ik}^{(E)} x_{kj}^{(l)} m_{E_k}}{16\pi^2} \left\{ \left[F\left(m_{H_1}^2, m_{E_k}^2\right) - F\left(m_{H_2}^2, m_{E_k}^2\right) \right] \sin 2\theta_H - \left[F\left(m_{A_1}^2, m_{E_k}^2\right) - F\left(m_{A_2}^2, m_{E_k}^2\right) \right] \sin 2\theta_A \right\},$$

where $F(m_1^2, m_2^2)$ is the function defined as,

$$F(m_1^2, m_2^2) = \frac{m_1^2}{m_1^2 - m_2^2} \ln\left(\frac{m_1^2}{m_2^2}\right).$$

 m_{H_1} and m_{H_2} are the masses of the physical CP even inert scalars, whereas m_{A_1} and m_{A_2} are those of the inert pseudoscalars.

Models of Radiative Linear Seesaw with Electrically Charged Mediators: **Charged leptons mass matrix**

The SM charged lepton mass matrix can be parametrized as follows:

$$M_{l} = A_{l}J_{E}^{-1}B_{l}^{T}, \qquad J_{E} = \begin{pmatrix} \frac{1}{16\pi^{2}}m_{E_{1}}K_{E}^{(1)} & 0 & 0\\ 0 & \frac{1}{16\pi^{2}}m_{E_{2}}K_{E}^{(2)} & 0\\ 0 & 0 & \frac{1}{16\pi^{2}}m_{E_{3}}K_{E}^{(3)} \end{pmatrix}$$

where:

$$\begin{split} K_E^{(n)} &= \left[F\left(m_{H_1}^2, m_{E_n}^2\right) - F\left(m_{H_2}^2, m_{E_n}^2\right) \right] \sin 2\theta_H \\ &- \left[F\left(m_{A_1}^2, m_{E_n}^2\right) - F\left(m_{A_2}^2, m_{E_n}^2\right) \right] \sin 2\theta_A, \quad n = 1, 2, 3 \\ A_l &= V_L^{(l)} \widetilde{M}_l^{\frac{1}{2}} J_E^{\frac{1}{2}}, \qquad B_l = V_R^{(l)} \widetilde{M}_l^{\frac{1}{2}} J_E^{\frac{1}{2}}, \qquad \widetilde{M}_l = \begin{pmatrix} m_e & 0 & 0 \\ 0 & m_\mu & 0 \\ 0 & 0 & m_\tau \end{pmatrix} \end{split}$$

- *M* is diagonal and $|M_{11}| \ll |M_{22}|$
- Leptogenesis is dominated by N_{\pm}

$$K^{eff} \simeq \left(K_{N^+} \delta_+^2 + K_{N^-} \delta_-^2 \right),$$

where:

$$\delta_{\pm} = \frac{m_{N^{+}} - m_{N^{-}}}{\Gamma_{N^{\pm}}}, \qquad K_{N^{\pm}} = \frac{\Gamma_{\pm}}{H(T)}, \qquad H(T) = \sqrt{\frac{4\pi^{3}g^{*}}{45}\frac{T^{2}}{M_{P}}}$$
$$Y_{\Delta B} = \frac{n_{B} - \overline{n}_{B}}{s} = -\frac{28}{79}\frac{\epsilon_{+} + \epsilon_{-}}{g^{*}}, \quad \text{for} \quad K^{eff} \ll 1,$$
$$n_{B} - \overline{n}_{B} = -\frac{28}{79}\frac{0.3(\epsilon_{+} + \epsilon_{-})}{g^{*}}, \qquad K^{eff} \ll 1,$$

$$Y_{\Delta B} = \frac{n_B - n_B}{s} = -\frac{28}{79} \frac{0.3(e_+ + e_-)}{g^* K^{eff} (\ln K^{eff})^{0.6}}, \quad \text{for} \quad K^{eff} \gg 1,$$

Models of Radiative Linear Seesaw with Electrically Charged Mediators: **cLFV**: $\mu \rightarrow e\gamma$

$$BR(l_i \to l_j \gamma) = \frac{\alpha_W^3 s_W^2 m_{l_i}^5}{256\pi^2 m_W^4 \Gamma_i} |G_{ij}|^2$$

$$G_{ij} \simeq \sum_{k=1}^3 ([(1 - RR^{\dagger}) U_{\nu}]^*)_{ik} ((1 - RR^{\dagger}) U_{\nu})_{jk} G_{\gamma} \left(\frac{m_{\nu_k}^2}{m_W^2}\right)$$

$$+ 2 \sum_{l=1}^2 (R^*)_{il} (R)_{jl} G_{\gamma} \left(\frac{m_{N_{R_l}}^2}{m_W^2}\right),$$

$$G_{\gamma}(x) = \frac{10 - 43x + 78x^2 - 49x^3 + 18x^3 \ln x + 4x^4}{12(1 - x)^4},$$

where

$$R = \frac{1}{\sqrt{2}} m M^{-1},$$