

Thermal and baryon density modifications of the $\sigma\text{-boson}$ propagator in an HTL-like approximation

M.C. José Jorge Medina Serna

November 4th of 2024

XV Latin American Symposium on High Energy Physics

Introduction

Heavy-ion collisions Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Aproximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

Heavy-ion collisions

N. physics at JINR (official Web-Page).

Lecture Notes in Physics, vol 987. Springer, Cham.

Nuclear Physics A, vol. 1005, p. 121752, 2021.

XV Latin American Symposium on High Energy Physics

Core-Corona model for

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

thermodynamic correction

Poles of the propagator

Core-Corona model for polarization of $\boldsymbol{\Lambda}$

XV Latin American Symposium on High Energy Physics

Introduction

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Aproximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

Particles 2023, 6, 405-415.

Λ interactions in the corona

The core, where the energy density is high, can be modeled as a QCD plasma.

The corona, where the energy density is low, can be modeled as a hadronic gas.

Then, we have to obtain the thermodynamic correction to the σ propagator.

Phys.Rev.D 109 (2024) 7, 074018

XV Latin American Symposium on High Energy Physics

Introduction

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

Physical Review C, 63(6), 065203.

One-loop thermodynamic correction to the scalar sigma meson

Considering the corona region as an baryonic gas, the one-loop correction to the σ propagator Δ^* at finite temperature T and baryonic chemical potential μ can be written in the imaginary time formalism as

$$\Delta^*(i\omega,p) = \frac{1}{\omega^2 + p^2 + m_\sigma^2 + \Pi},$$

where Π is the σ self energy at one loop as is depicted in the Feynman diagram showed below.

XV Latin American Symposium on High Energy Physics

Introduction

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

(1)

Explicity, the σ self energy is

$$\Pi = T \sum_{n} \int \frac{d^{3}k}{(2\pi)^{3}} g_{\sigma}^{2} \operatorname{Tr} \left[(M_{N} - k)(M_{N} - (k - P)) \right]$$

$$\times \tilde{\Delta}(K) \tilde{\Delta}(K - P).$$

Where

$$P = (i\omega, \vec{p}),$$

$$K = (i\omega_n, \vec{k}).$$
(3)

The compute expression (2) we use the standar methods of sumation of frequencies which involve distributions functions and the energy of the particles.

$$E_{1} = \sqrt{M_{N}^{2} + k^{2}}$$

$$E_{2} = \sqrt{M_{N}^{2} + k^{2} + p^{2} - 2pk\cos\theta}$$

$$\tilde{n}_{\pm}(E) = \frac{1}{e^{\frac{E \mp \mu}{T}} + 1}$$
(4)

XV Latin American Symposium on High Energy Physics

Introduction

(2)

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

Approximation for $M_N > T$

We can make the change of variable $\xi^2 = M_N^2 + k^2$, $\xi d\xi = kdk$. This new variable has the information of the nucleon mass and allow us to make the following approximations,

$$\begin{split} E_1 &\approx \sqrt{\xi^2} = \xi \\ E_2 &\approx \sqrt{\xi^2 - 2\sqrt{\xi^2 - M_N^2}p\cos\theta + p^2} \\ &\approx \xi - p\cos\theta + \frac{p^2 - p^2x^2}{2\xi} \\ \tilde{n}_{\pm}(E_1) &\approx e^{-\frac{\xi}{T} \pm \frac{\mu}{T}} \equiv n_{\pm}^1 \\ \tilde{n}_{\pm}(E_2) &\approx n_{\pm}^1 - p\cos\theta \frac{dn_{\pm}^1}{d\xi} \equiv n_{\pm}^2 \end{split}$$

XV Latin American Symposium on High Energy Physics

Introduction

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

(5)

Leading order contribution to self energy

The leading order contribution term over M can be written as

$$\Pi = M_T p_0 \left((3x^3 - x) \log \left(\frac{x+1}{x-1} \right) + 6x^2 + \frac{2}{3} \right) - \frac{5M_T p_0 x^4 \log \left(\frac{x^2 + \sqrt{3x^2 + 1} + 1}{x^2 - \sqrt{3x^2 + 1} + 1} \right)}{\sqrt{3x^2 + 1}}$$

Where we have defined

$$M_{T} = \frac{2g^{2}M_{N}e^{-M/T}\sinh\left(\frac{\mu}{T}\right)}{\pi^{2}}$$
$$x = \frac{p0}{p}$$
(7)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ● ● ● ●

XV Latin American Symposium on High Energy Physics

Introduction

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

(6)

Propagator with thermodynamic correction

If we notice that
$$\frac{x+1}{x-1} < 0$$
 and $\frac{x^2+\sqrt{3x^2+1}+1}{x^2-\sqrt{3x^2+1}+1} < 0$ when $-1 < x < 1$, we can express the propagator as

$$\Delta^*(q_0) = \frac{1}{p_0^2 - p^2 - m_\sigma^2 - F(p_0, p) + i\pi A(p_0, p)\theta(p^2 - p_0^2)},$$
 (8)

XV Latin American Symposium on High Energy Physics

Introduction

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

XV Latin American Symposium on High Energy Physics

Introduction

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

Where we have defined

$$F(p_0, p) = M_T p_0 \left((3x^3 - x) \log \left(\left| \frac{x+1}{x-1} \right| \right) + 6x^2 + \frac{2}{3} \right) - \frac{5M_T p_0 x^4 \log \left(\left| \frac{x^2 + \sqrt{3x^2 + 1} + 1}{x^2 - \sqrt{3x^2 + 1} + 1} \right| \right)}{\sqrt{3x^2 + 1}}, \qquad (9)$$

and

$$A(p_0, p) = M_T p_0 \left((3x^3 - x) - \frac{5x^4}{\sqrt{3x^2 + 1}} \right) \right].$$
(10)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

10 / 24

Spectral density

We can obtain the spectral density making the analytic continuation and taking the imaginary part of the propagator,

$$\rho_{\sigma}(p_0, p) = 2 \operatorname{Im} \Delta^*(q_0 + i\eta, q). \tag{11}$$

Then, it is easy to show that

$$\rho_{\sigma}(p_{0}, p) = 2\pi Z(\omega(p)) \left[\delta(p_{0} - \omega_{\sigma}(p)) - \delta(p_{0} + \omega_{\sigma}(p))\right] + \beta(p_{0}, p), \qquad (12)$$

with

$$\beta(p0,p) = \frac{A(p_0,p)\theta(p^2 - p_0^2)}{(p_0^2 - p^2 - m_\sigma^2 - F(p_0,p))^2 - (\frac{A(p_0,p)\pi}{2})^2}.$$
 (13)

XV Latin American Symposium on High Energy Physics

Introduction

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

Poles of the propagator

Now, $\omega_{\sigma}(p)$ is the pole of

$$\frac{1}{p_0^2 - p^2 - m_\sigma^2 - F(p_0, p)},$$

and $Z(\omega_{\sigma}(p))$ the residue. Then

$$\omega_{\sigma}(p)^2 - p^2 - m_{\sigma}^2 - F(\omega_{\sigma}(p), p) = 0.$$

Explicity, this is

$$\omega_{\sigma}(p)^{2} = p^{2} + m_{\sigma}^{2} + M_{T}p_{0}$$

$$\times \left(\left((3x^{3} - x) \log \left(\left| \frac{x+1}{x-1} \right| \right) + 6x^{2} + \frac{2}{3} \right) - \frac{5x^{4} \log \left(\left| \frac{x^{2} + \sqrt{3x^{2} + 1} + 1}{x^{2} - \sqrt{3x^{2} + 1} + 1} \right| \right)}{\sqrt{3x^{2} + 1}} \right)$$
(16)

XV Latin American Symposium on High Energy Physics

Introduction

(14)

(15)

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

Summary

The discussion and results obtained can be summary as follows:

- \blacktriangleright The RMF model can be used to calculated the σ self energy.
- We aproximate the propagator with HTL-like model wich has the information of the large mass of the nucleons.
- The spectral desity of the propagator has a similar behavior as the HTL model.
- The thermic σ-boson propagator can be used to estimated the Λ polarization contribution from the corona region.

XV Latin American Symposium on High Energy Physics

Introduction

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

XV Latin American Symposium on High Energy Physics

Introduction

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

BACKUP

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Different sets of couplings in the RMF model

For the interactions of nucleons and Λ in the RMF model, some couplings are

	NL3	BigApple	TM1	IUFSU
M_{σ} [MeV]	508.194	492.730	511.198	491.5
gσ	10.217	9.6699	10.0289	9.9713
$g_{\sigma\Lambda}/g_{\sigma}$	0.618896	0.616322	0.621052	0.616218

XV Latin American Symposium on High Energy Physics

Introduction

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

Traces of the Feynmann diagram

The trace give us

$$\Pi = 4T \sum_{n} \int \frac{d^{3}k}{(2\pi)^{3}} g_{\sigma}^{2} \left[M_{N}^{2} + \omega_{n}^{2} + k^{2} - \omega_{n}\omega - \vec{k}\vec{p} \right]$$
$$\times \tilde{\Delta}(K)\tilde{\Delta}(K - P).$$
(17)

It is convenient to separate the last expression into three integrals,

$$\Pi_{1} = 4T \sum_{n} \int \frac{d^{3}k}{(2\pi)^{3}} g_{\sigma}^{2} \left[M_{N}^{2} + \omega_{n}^{2} + k^{2} \right] \tilde{\Delta}(K) \tilde{\Delta}(K - P),$$

$$\Pi_{2} = -4T \sum_{n} \int \frac{d^{3}k}{(2\pi)^{3}} g_{\sigma}^{2} \left[\vec{k} \vec{p} \right] \tilde{\Delta}(K) \tilde{\Delta}(K - P), \qquad (18)$$

$$\Pi_{3} = -4T \sum_{n} \int \frac{d^{3}k}{(2\pi)^{3}} g_{\sigma}^{2} \left[\omega_{n} \omega \right] \tilde{\Delta}(K) \tilde{\Delta}(K - P).$$

XV Latin American Symposium on High Energy Physics

Introduction

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

Computation of Π_1

The term $\left[M_N^2 + \omega_n^2 + k^2\right]$ is the inverse of $\tilde{\Delta}(K)$, then

$$\Pi_{1} = 4T \sum_{n} \int \frac{d^{3}k}{(2\pi)^{3}} g_{\sigma}^{2} \tilde{\Delta}(K - P)$$

$$= 4T \sum_{n} \int \frac{d^{3}k}{(2\pi)^{3}} g_{\sigma}^{2} \tilde{\Delta}(K)$$

$$= \frac{2g_{\sigma}^{2}}{E_{1}} \int \frac{d^{3}k}{(2\pi)^{3}} (1 - \tilde{n}_{+}(E_{1}) - \tilde{n}_{-}(E_{1})). \quad (19)$$

Now we apply the approximations and omit the temperature independent term to obtain

$$\Pi_{1} = -2g^{2} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{\xi} \left(e^{\frac{-\mu-\xi}{T}} + e^{\frac{\mu-\xi}{T}} \right)$$
$$= -2g^{2} \int \frac{d\xi d(\cos\theta)}{(2\pi)^{2}} \sqrt{\xi^{2} - M^{2}} \cosh\left(\frac{\mu}{T}\right) \qquad (20)$$

XV Latin American Symposium on High Energy Physics

Introduction

Heavy-ion collisions

Core-Corona model for olarization

Thermodynamic correction to the scalar sigma meson

Aproximation for $M_N > T$

Leading order contribution to the self energy

Propagator with hermodynamic correction

Spectral density

Poles of the propagator

Summary

Permormig the remaining integrals,

$$\Pi_1 = -\frac{2g^2}{\pi^2} MT \ K_1\left(\frac{M}{T}\right) \cosh\left(\frac{\mu}{T}\right), \qquad (21)$$

where $K_1(x)$ is the modified Bessel function of second kind. Now, if we consider that M >> T, then de Bessel function behaves as

$$K_1(\frac{M}{T}) \approx \sqrt{\frac{\pi}{2}} e^{-\frac{M}{T}} \sqrt{\frac{T}{M}}.$$

correction to the scalar sigma meson Approximation for $M_{\rm M} > T$

(22)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ● の ○ ○

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

Therefore

$$\Pi_{1} \approx -\frac{\sqrt{2}g^{2}}{\pi^{\frac{3}{2}}}M^{\frac{1}{2}}T^{3/2} \cosh\left(\frac{\mu}{T}\right).$$
(23)

XV Latin American Symposium on High Energy Physics

Introduction

Heavy-ion collisions

Core-Corona model for polarization

Computation of Π_2

The expression for Π_2 is

$$\Pi_2 = -4T \sum_n \int \frac{d^3k}{(2\pi)^3} g_\sigma^2 \left[\vec{k} \vec{p} \right] \tilde{\Delta}(K) \tilde{\Delta}(K-P).$$

We use the following identity,

$$T\sum_{n} \tilde{\Delta}(i\omega_{n} - \mu, \vec{k})\tilde{\Delta}(i(\omega_{n} - \omega) + \mu, \vec{k} - \vec{p}) = \frac{1}{E_{1}E_{2}} \left[\frac{1 - \tilde{n}_{+}(E1) - \tilde{n}_{-}(E2)}{i\omega - E_{1} - E_{2}} - \frac{1 - \tilde{n}_{-}(E1) - \tilde{n}_{+}(E2)}{i\omega + E_{1} + E_{2}} \right] - (25)$$
$$\frac{1}{E_{1}E_{2}} \left[\frac{\tilde{n}_{-}(E1) - \tilde{n}_{-}(E2)}{i\omega + E_{1} - E_{2}} - \frac{\tilde{n}_{+}(E1) - \tilde{n}_{+}(E2)}{i\omega - E_{1} + E_{2}} \right].$$

XV Latin American Symposium on High Energy Physics

Introduction

(24)

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

Now let us define

$$\begin{split} \mathsf{I}_1 &= \int \, d\xi \, \left(\xi^2 - M_N^2\right) \xi \, \frac{(n_+^1 + n_-^2)}{E_1 \, E_2(p_0 - \Delta E^+)}, \\ \mathsf{I}_2 &= \int \, d\xi \, \left(\xi^2 - M_N^2\right) \xi \, \frac{(n_-^1 + n_+^2)}{E_1 \, E_2(p_0 + \Delta E^+)}, \\ \mathsf{I}_3 &= \int \, d\xi \, \left(\xi^2 - M_N^2\right) \xi \, \frac{(n_-^1 - n_-^2)}{E_1 \, E_2(p_0 + \Delta E^-)}, \\ \mathsf{I}_4 &= \int \, d\xi \, \left(\xi^2 - M_N^2\right) \xi \, \frac{(n_+^1 - n_+^2)}{E_1 \, E_2(p_0 - \Delta E^-)}. \end{split}$$

XV Latin American Symposium on High Energy Physics

Introduction

(26)

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

With

$$\Delta E^{+} = E_{1} + E_{2}, \Delta E^{-} = E_{1} - E_{2}.$$
(27)

Then we can write

$$\Pi_2 = -\frac{4g_\sigma^2 p}{(2\pi)^2} \int d(\cos\theta) \cos\theta \left[-(I_1 - I_2) - (I_3 - I_4) \right]$$
(28)

◆□ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

At leading order, we can write

$$\begin{split} \Pi_2 &= \frac{2g^2 p_0 e^{-\frac{M}{T}}}{\pi^2} \left(\frac{\left(48x^4 + 26x^2 + 1\right)}{3x^2 \left(x^2 + 1\right)} \right. \\ &+ \frac{\left(22x^4 + 13x^2 + 1\right) \log\left(\frac{x+1}{x-1}\right)}{2 \left(x^3 + x\right)} \\ &+ \frac{\left(2x^2 + 1\right) \left(19x^2 + 5\right) \log\left(\frac{\sqrt{1+3x^2} + x - 1}{\sqrt{1+3x^2} - x + 1}\right)}{\left(x^2 + 1\right) \sqrt{\left(1 + 3x^2\right)}} \right) \\ &\times \left(p_0 \cosh\left(\frac{\mu}{T}\right) - T \sinh\left(\frac{\mu}{T}\right) \right) \end{split}$$

XV Latin American Symposium on High Energy Physics

Introduction

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

(29)

Computation of Π_3

The expression for Π_3 is

$$\Pi_3 = -4T \sum_n \int \frac{d^3k}{(2\pi)^3} g_\sigma^2 \ [\omega_n \omega] \,\tilde{\Delta}(K) \tilde{\Delta}(K-P).$$

We use the following identity,

$$T \sum_{n} \omega_{n} \tilde{\Delta}(i\omega_{n} - \mu, \vec{k}) \tilde{\Delta}(i(\omega_{n} - \omega) + \mu, \vec{k} - \vec{p}) = \frac{i}{E_{2}} \left[\frac{1 - \tilde{n}_{+}(E1) - \tilde{n}_{-}(E2)}{i\omega - E_{1} - E_{2}} + \frac{1 - \tilde{n}_{-}(E1) - \tilde{n}_{+}(E2)}{i\omega + E_{1} + E_{2}} \right] - (31)$$
$$\frac{i}{E_{2}} \left[\frac{\tilde{n}_{-}(E1) - \tilde{n}_{-}(E2)}{i\omega + E_{1} - E_{2}} + \frac{\tilde{n}_{+}(E1) - \tilde{n}_{+}(E2)}{i\omega - E_{1} + E_{2}} \right]$$

XV Latin American Symposium on High Energy Physics

Introduction

(30)

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

Now let us define

$$\begin{split} \mathsf{J}_{1} &= \int \, d\xi \, \sqrt{\xi^{2} - M_{N}^{2}} \, \xi \, \frac{(n_{+}^{1} + n_{-}^{2})}{E_{2}(p_{0} - \Delta E^{+})}, \\ \mathsf{J}_{2} &= \int \, d\xi \, \sqrt{\xi^{2} - M_{N}^{2}} \, \xi \, \frac{(n_{-}^{1} + n_{+}^{2})}{E_{2}(p_{0} + \Delta E^{+})}, \\ \mathsf{J}_{3} &= \int \, d\xi \, \sqrt{\xi^{2} - M_{N}^{2}} \, \xi \, \frac{(n_{-}^{1} - n_{-}^{2})}{E_{2}(p_{0} + \Delta E^{-})}, \\ \mathsf{J}_{4} &= \int \, d\xi \, \sqrt{\xi^{2} - M_{N}^{2}} \, \xi \, \frac{(n_{+}^{1} - n_{+}^{2})}{E_{2}(p_{0} - \Delta E^{-})}. \end{split}$$

XV Latin American Symposium on High Energy Physics

Introduction

(32)

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

With

$$\Delta E^{+} = E_{1} + E_{2}, \Delta E^{-} = E_{1} - E_{2}.$$
(33)

Then we can write

$$\Pi_{3} = -\frac{4g_{\sigma}^{2}p_{0}}{(2\pi)^{2}} \int d(\cos\theta) \left[-(J_{1} + J_{2}) + (J_{3} + J_{4}) \right]$$
(34)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

XV Latin American Symposium on High Energy Physics

Introduction

Heavy-ion collisions

Core-Corona model for polarization

Thermodynamic correction to the scalar sigma meson

Approximation for $M_N > T$

Leading order contribution to the self energy

Propagator with thermodynamic correction

Spectral density

Poles of the propagator

Summary

(35)

At leading order, we can write

$$\Pi_{3} = M_{T} p_{0} \left((3x^{3} - 1x) \log \left(\frac{x+1}{x-1} \right) + 6x^{2} + \frac{2}{3} \right)$$
$$- \frac{5M_{T} p_{0} x^{4} \log \left(\frac{x^{2} + \sqrt{3x^{2} + 1} + 1}{x^{2} - \sqrt{3x^{2} + 1} + 1} \right)}{\sqrt{3x^{2} + 1}}.$$