

Data-driven magnetic dipole moment of the rho meson

Genaro Toledo Sánchez Antonio Rojas Ramos

• Phys.Rev.D 110 (2024) 5, 056037 e-Print: 2406.14676 [hep-ph]

XV Latin American Sync osium on High Energy Physics, México city, Nov. 2024

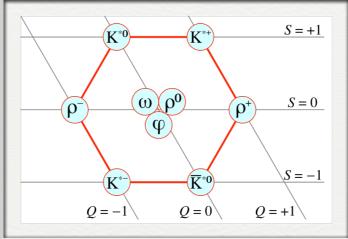
• Motivation

- Radiative processes
- Lessons from the W
- Electromagnetic vertex VVy

•
$$e^+ e^- \rightarrow \pi^+ \pi^- 2\pi^0$$

- First analysis, the ρ MDM
- New analysis, what is new?
 - Modeling $e^+ e^- \rightarrow \pi^+ \pi^- 2\pi^0$
 - Channels and model tests
 - Magnetic dipole moment from Babar data
- Conclusions

The extremely short lifetime of vector mesons has prevented the measurement of their magnetic dipole moment (MDM)



Radiative process are an alternative to determine the mdm

Radiation emitted off the particle carries information of the electromagnetic structure

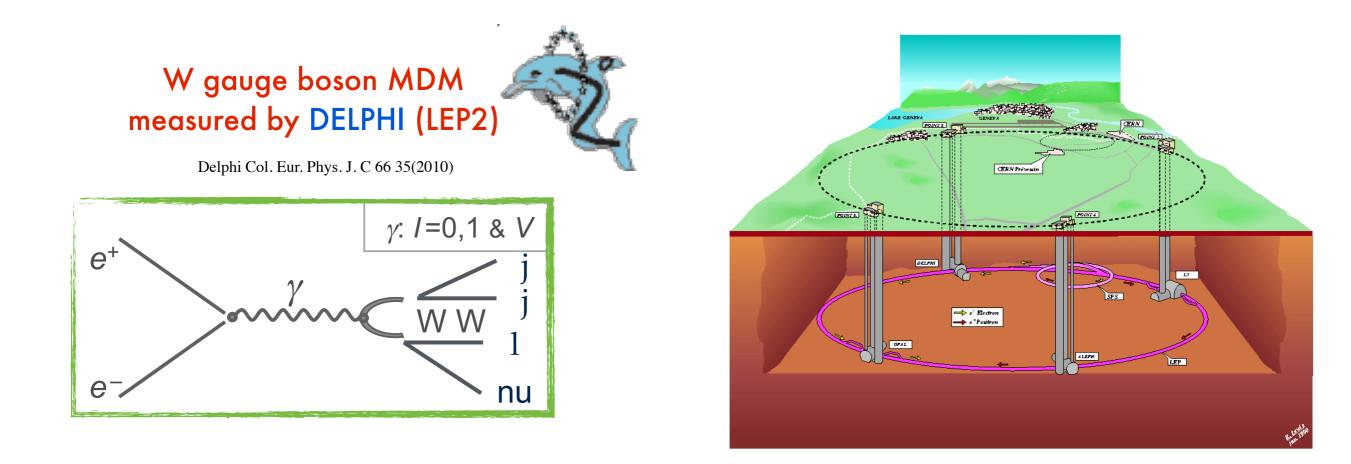
V. I. Zakharov, L. A. Kondratyuk and L. A. Ponomarev, Sov. J. of Nucl. Phys. 8 456(1969)

$ ho ightarrow \pi \pi \gamma$,	G. Lopez Castro and G. Toledo Sanchez, Phys. Rev. D
$\tau \rightarrow \nu \rho \gamma$	56 , 4408(1997); Phys. Rev. D 60 , 053004(1999). G. Lopez Castro and G. Toledo Sanchez, Phys. Rev. D
$\tau \rightarrow \nu \pi \pi \gamma$	61 , 033007 (2000).

There is no experimental information on neither of these decays

Lessons from the W

The extremely short lifetime prevents of applying standard precession techniques

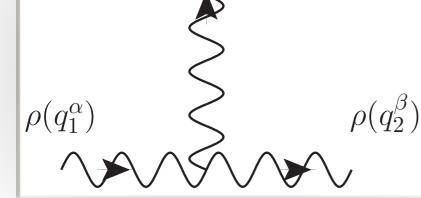


Tests the gauge structure of the standard model. So far it is in agreement with the SM prediction

Electromagnetic vertex

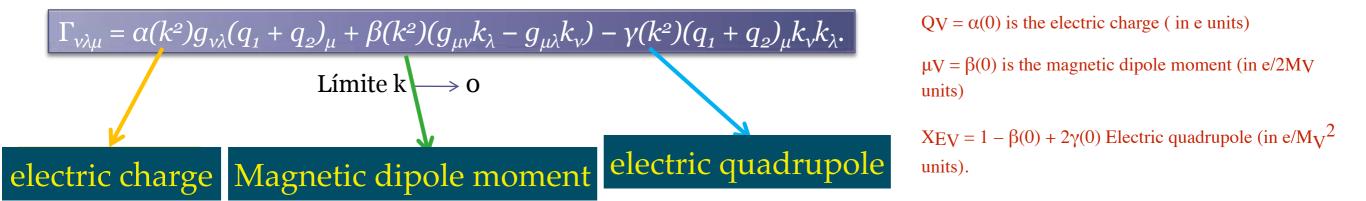
The electromagnetic current is related to the vertex

Estructura mult $\gg \gamma(k^{\mu})$ del vértice de interacción.



$$J^{em}_{\mu}(x) = (\rho^{em}(x), \vec{J}^{em}(x))$$

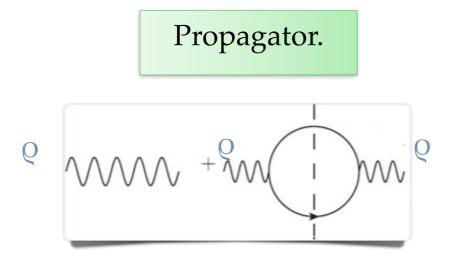
 $\langle V(q_2)|J^{em}_{\mu}(0)|V(q_1)\rangle = \eta_{1\nu}\eta^*_{2\lambda}\Gamma^{\nu\lambda}_{\mu}(q_1,k) \equiv J_{\mu}(q_1,k)$



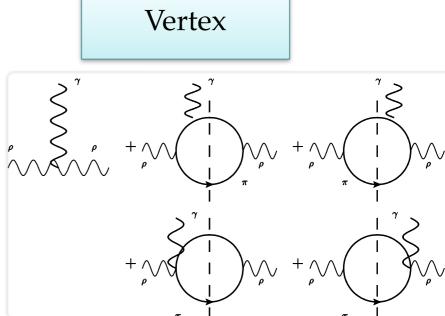
K. Hagiwara, R. D. Peccei, D. Zeppenfeld and K. Hikasa, Nucl. Phys. B282, 253 (1987).

J. F. Nieves and P. B. Pal, Phys. Rev. D 55 3118(1997).

In QFT the width arises naturally from the absortive part of the loops.
The Ward identity is fulfilled order by order in PT.



G. López Castro y G. Toledo Sánchez, 2000 Phys. Rev. D 61 033007.



Finite width effect on the multipoles is small

Multipole	W boson	ρ meson	K^* meson
Q [e]	1	1	1
$ \vec{\mu} [e/2M_V]$	2.0	2 - 0.0091	2 - 0.0047
$ X_E \ [e/M_V^2]$	$1 - 4.23 \times 10^{-7}$	1 - 0.0387	1 - 0.097

D. García Gudiño and G. Toledo Sánchez, Phys. Rev. D 81, 073006 (2010).

consistent with complex mass scheme

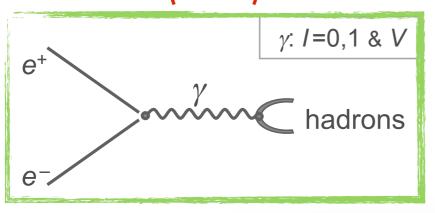
$$D^{\mu\nu}[q,V] = i \left(\frac{-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{M_V - iM_V\Gamma}}{q^2 - M_V^2 + iM_V\Gamma} \right)$$

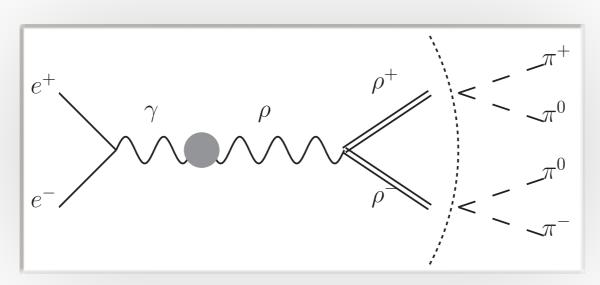
Momentum dependent width

$$\Gamma_{\rho}(q^{2}) = \frac{\left(\sqrt{q^{2}}\right)^{-5} \left(\lambda \left[q^{2}, m_{\pi}^{2}, m_{\pi}^{2}\right]\right)^{3/2}}{m_{\rho}^{-5} \left(\lambda \left[m_{\rho}^{2}, m_{\pi}^{2}, m_{\pi}^{2}\right]\right)^{3/2}} \Gamma_{\rho}$$

Lessons from the W (continued)

Electroproduction of hadrons may be helpful for the rho ? BABAR (SLAC)

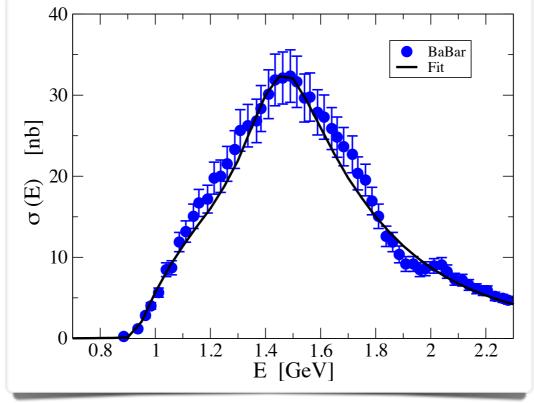




Carries the MDM info

First analysis

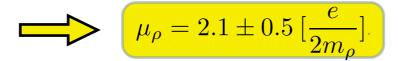
Preliminary data BABAR coll. V. P. Druzhinin, arxiv: 0710.3455 (2007).



D. García Gudiño and G. Toledo Sánchez, Determination of the magnetic dipole moment of the rho meson using 4 pion electroproduction data, Int. J. Mod. Phys. Conf. Ser. **35**, 1460463 (2014), arXiv:1305.6345 [hepph].

D. G. Gudiño and G. T. Sánchez, Determination of the magnetic dipole moment of the rho meson using fourpion electroproduction data, International Journal of Modern Physics A **30**, 1550114 (2015).

Total cross section data from the preliminary analysis of BaBar, we have assigned a 10% systematic error bar (symbols). Provided all the parameters involved in our description are determined from other observables, we performed a fit considering the MDM as the only free parameter.



The quoted error bar: Uncertainties coming from the couplings of the different channels

8

Model assumptions

Preliminary data

Scarce information on the ρ ' meson

New analysis

Total cross section data from BaBar

J. P. Lees *et al.* (BaBar), Measurement of the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ cross section using initial-state radiation at BABAR, Phys. Rev. D 96, 092009 (2017),

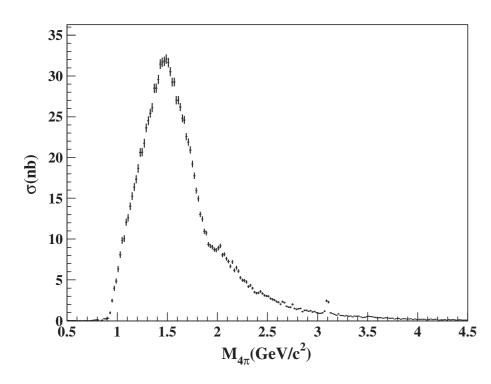


FIG. 9. The measured dressed $\pi^+\pi^-2\pi^0$ cross section (statistical uncertainties only).

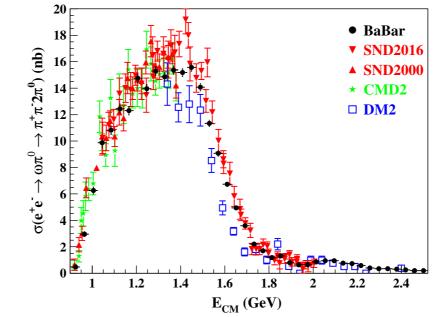


FIG. 13. The measured $e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^+ \pi^- 2\pi^0$ cross sections from different experiments [41–44] as a function of E_{CM} with statistical uncertainties. Data measured in other decays than $\omega \to \pi^+ \pi^- \pi^0$ are scaled by the appropriate branching ratio.

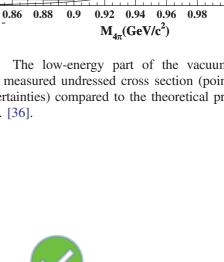
Improvements on previous analysis

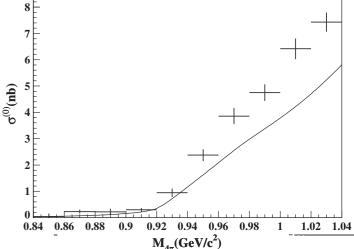
Uncertainties coming from the couplings of the different channels

Model assumptions

Definite data on this process

Improved information on the p' meson





Antonio Rojas

Genaro Toleдо

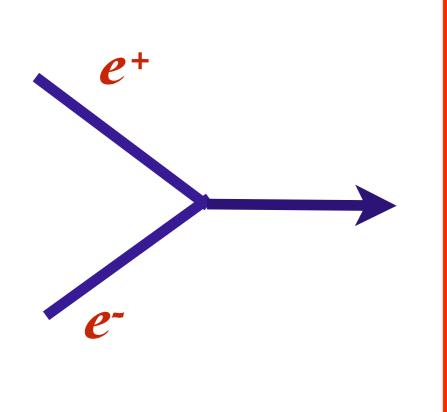
e-Print:2406.14676 [hep-ph]

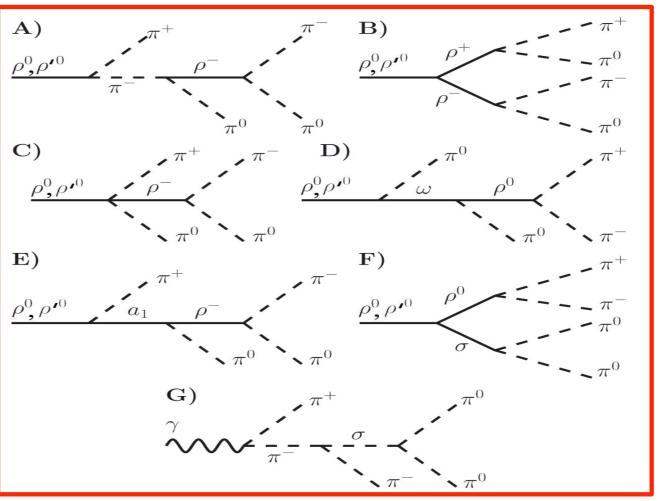
FIG. 11. The low-energy part of the vacuum polarization corrected measured undressed cross section (points with statistical uncertainties) compared to the theoretical prediction (line) from Ref. [36].

G. Toledo

Modeling $e^+ e^- \rightarrow \pi^+ \pi^- 2\pi^0$

We consider the Vector Meson Dominance apprach (VMD)





The channels that we have considered here, include the exchange of the π , ω , a1, σ , f(980), ρ and ρ ' mesons.

$$\mathcal{L} = \sum_{V=\rho, \,\rho', \,\omega} \frac{e \, m_V^2}{g_V} \, V_\mu \, A^\mu + \sum_{V=\rho, \,\rho'} g_{V\pi\pi} \, \epsilon_{abc} \, V^a_\mu \, \pi^b \, \partial^\mu \, \pi^c$$
$$+ \sum_{V=\rho, \,\rho'} g_{\omega V\pi} \, \delta_{ab} \, \epsilon^{\mu\nu\lambda\sigma} \, \partial_\mu \, \omega_\nu \, \partial_\lambda \, V^a_\sigma \, \pi^b \, + \, g_{3\pi} \, \epsilon_{abc} \, \epsilon^{\mu\nu\lambda\sigma} \, \omega_\mu \, \partial_\nu \, \pi^a \, \partial_\lambda \, \pi^b \, \partial_\sigma \, \pi^c.$$

Modeling $e^+ e^- \rightarrow \pi^+ \pi^- 2\pi^0$

$$e^+(k_1)e^-(k_2) \to \pi^+(p_1)\pi^0(p_2)\pi^-(p_3)\pi^0(p_4)$$

$$\mathcal{M} = \frac{-ie}{(k_1 + k_2)^2} l^{\mu} h_{\mu}(p_1, p_2, p_3, p_4)$$

Leptonic current $l^{\mu} \equiv \bar{v}(k_2)\gamma^{\mu}u(k_1)$

Four pion electromagnetic current current

$$h_{\mu}(p_1, p_2, p_3, p_4) = -h_{\mu}(p_3, p_2, p_1, p_4)$$
Charge conjugation
$$h_{\mu}(p_1, p_2, p_3, p_4) = h_{\mu}(p_1, p_4, p_3, p_2)$$
Bose-Symmetry
$$H_{\mu}(p_1, p_2, p_3, p_4) = h_{\mu}(p_1, p_4, p_3, p_2)$$
Charge conjugation
$$H_{\mu}(p_1, p_2, p_3, p_4) = h_{\mu}(p_1, p_4, p_3, p_2)$$
Charge conjugation

Previous studies S. I. Eidelman, Z. K. Silagadze and E. A. Kuraev; Phys. Lett. B 346 186(1995); G. Ecker and R. Unterdorfer, Eur. Phys. J. C 24 535(2002). H. Czyz, J. H. Kuhn and A. Wapienik, Phys. Rev. D 77 114005(2008); J. Juran and P. Lichard, Phys. Rev. D 78 017501(2011).

Written in terms of a reduced amplitude no longer restricted by the symmetries

$$h_{\mu}(p_1, p_2, p_3, p_4) = \mathcal{M}_{r\mu}(p_1, p_2, p_3, p_4) + \mathcal{M}_{r\mu}(p_1, p_4, p_3, p_2) \\ - \mathcal{M}_{r\mu}(p_3, p_2, p_1, p_4) - \mathcal{M}_{r\mu}(p_3, p_4, p_1, p_2)$$

Here: We follow the same approach as in the previous analysis, but now we have explicit gauge invariant amplitudes with Charge conjugation and Bose- symmetry enforced

$$\begin{array}{c} (\varepsilon) & (\varepsilon)$$

Pseudo-Scalar propagator $S_{\pi}[q] = i/(q^2 - m_{\pi}^2).$

Similar amplitude for the rho' is added (180^o phase)

G. Ecker and R. Unterdorfer, Eur. Phys. J. C 24 535(2002).

H. Czyz, J. H. Kuhn and A. Wapienik, Phys. Rev. D 77 114005(2008)

In the previous analysis, given the scarce information on the rho', a VMD-like relation was used

$$\frac{m_{\rho'}^2}{g_{\rho'}}g_{\rho'\pi\pi} = \frac{m_{\rho}^2}{g_{\rho}}g_{\rho\pi\pi}$$

Parameters analysis. decay modes and cross section data

Avalos et al, Phys Rev D 107 056006 (2023)

We minimize the function

$$\chi^{2}(\theta) = \sum_{i=1}^{N} \frac{(y_{i} - \mu(x_{i}; \theta))^{2}}{E_{i}^{2}},$$

considering the couplings as free parameters, for the following data:

(a) 10 decay modes:

11 decay modes: (a) + $\omega \rightarrow 3\pi$

(b)11 decay modes + $e^+e^- \to \pi^0\pi^0\gamma$ SND (00), (13), (16), CMD2

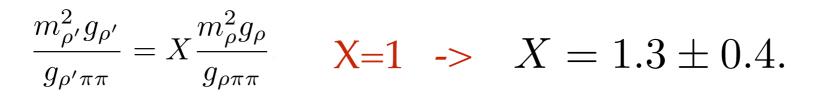
(c)11 decay modes + $e^+e^- \rightarrow 3\pi$ SND, I

SND, BABAR, CMD2, BES 3

All above + e e -> 4 pi (omega channel) BaBar

Couplings

Parameter	Value
$g_{ ho\pi\pi}$	5.9485 ± 0.0776
$g_{ ho}$	$ 4.9621 \pm 0.0940 $
g_{ω}	16.624 ± 0.4727
$g_{\omega\rho\pi} (\text{GeV}^{-1})$	11.294 ± 0.384
$g_{ ho'\pi\pi}$	$ 5.7968 \pm 0.4442 $
$g_{\omega\rho'\pi}$ (GeV ⁻¹)	3.613 ± 0.742
$g_{3\pi} ({\rm GeV}^{-3})$	-53.494 ± 7.1857
$g_{ ho'}$	12.845 ± 0.396
θ (in π units)	0.8967 ± 0.0416



Consistent within uncertainties

Channel B

$$\begin{array}{c}
e^{+} & & \rho^{+} & & - & \pi^{+} \\
e^{-} & & \rho^{-} & & - & \pi^{0} \\
e^{-} & & \rho^{-} & & - & \pi^{0} \\
\end{array}$$
Includes the ppy vertex
$$\Gamma_{\alpha\lambda\delta} = g_{\lambda\delta} Q_{1\alpha} + \beta_{0} (q_{\delta} g_{\alpha\lambda} - q_{\lambda} g_{\delta\alpha}) + s_{21\lambda} g_{\delta\alpha} - s_{43\delta} g_{\alpha\lambda},$$

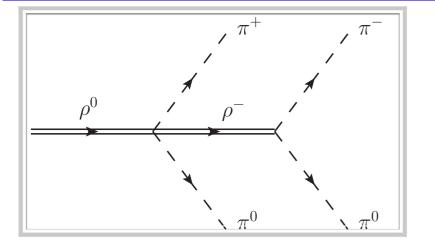
The amplitude is:

$$\mathcal{M}_{B}^{\mu}(p_{1}, p_{2}, p_{3}, p_{4}) = -e \frac{g_{\rho\pi\pi}^{3}}{g_{\rho}} m_{\rho}^{2} D_{\rho[q]}^{\alpha\mu}$$

$$r_{12\gamma} D_{\rho^{+}}^{\lambda\gamma}[s_{21}] \Gamma_{\alpha\lambda\delta}^{1} D_{\rho^{-}}^{\eta\delta}[s_{43}] r_{43\eta}, \qquad \Gamma_{\alpha\lambda\delta}^{1} = (1 + i\gamma) \Gamma_{\alpha\lambda\delta}$$

• Wherever the ρ meson appears, the ρ ' is also considered

Channel C



Gauge invariance of channels A, B y C fixes this contribution, applied for every form corresponding to the Bose and C symmetries.

$$q^{\mu}(\mathcal{M}_{rA\mu} + \mathcal{M}_{rB\mu} + \mathcal{M}_{rC\mu}) = 0.$$

Using a particular set of amplitudes, corresponding to the charge conjugation

$$\mathcal{M}^{\mu}_{ABC_{24}} = \mathcal{M}^{\mu}_{A}(p_{1}, p_{2}, p_{3}, p_{4}) + \mathcal{M}^{\mu}_{A}(p_{3}, p_{4}, p_{1}, p_{2}) + \mathcal{M}^{\mu}_{B}(p_{1}, p_{2}, p_{3}, p_{4}) + \mathcal{M}^{\mu}_{C}(p_{1}, p_{2}, p_{3}, p_{4}) + \mathcal{M}^{\mu}_{C}(p_{3}, p_{4}, p_{1}, p_{2})$$

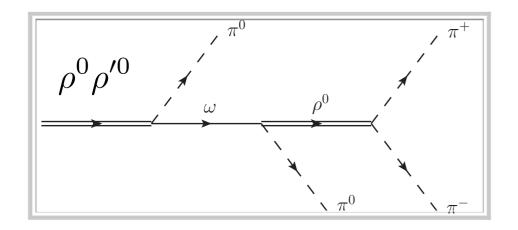
The explicit gauge invariant amplitude is:

$$\begin{aligned} \mathcal{M}^{\mu}_{ABC_{24}} &= i e C \left\{ L^{\mu}(x_{1}, x_{3}) \\ \left(D_{\rho^{-}}[s_{43}] r_{43} \cdot z_{12} - D_{\rho^{+}}[s_{21}] r_{12} \cdot z_{34} \right) \\ &+ r_{43} \cdot r_{12} \left(D_{\rho^{-}}[s_{43}] L^{\mu}(Q_{1}, x_{3}) - D_{\rho^{+}}[s_{21}] L^{\mu}(Q_{1}, x_{1}) \right) \\ &+ (1 + i \gamma) D_{\rho^{-}}[s_{43}] D_{\rho^{+}}[s_{21}] \\ \beta_{0} \left(q \cdot r_{12} r_{43}^{\mu} - q \cdot r_{43} r_{12}^{\mu} \right) \right\}, \end{aligned}$$

Similar expression is obtained for the neutral pion exchange

Channel D

$$\mathcal{L}_{\omega} = g_{\omega\rho\pi} \delta_{ab} \epsilon^{\mu\nu\lambda\sigma} \partial_{\mu} \omega_{\nu} \partial_{\lambda} \rho^{a}_{\sigma} \pi^{b}$$

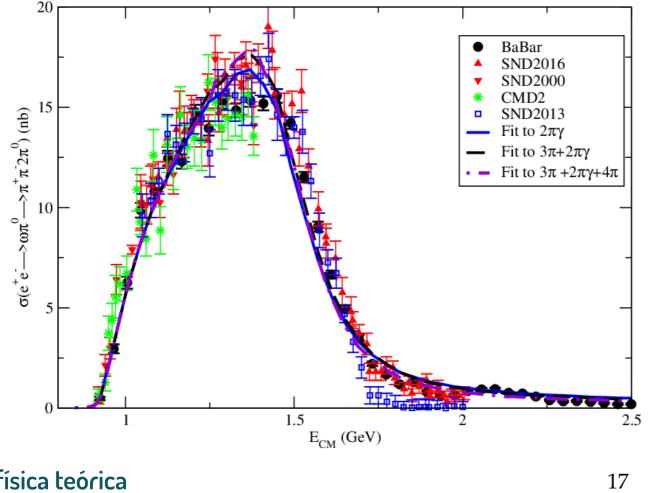


The explicit gauge invariant amplitude is:

$$\mathcal{M}_{D}^{\mu}(p_{1}, p_{2}, p_{3}, p_{4}) = -i e \left(C_{d} + e^{i\theta} C_{d}^{\prime}\right) D_{\omega}[q - p_{2}]$$
$$\mathcal{A}[(q - p_{2})^{2}] \epsilon_{\alpha\eta\beta\sigma} \epsilon^{\mu\gamma\chi\sigma} q_{\gamma} p_{2\chi} p_{1}^{\alpha} p_{3}^{\eta} p_{4}^{\beta}.$$

$$\mathcal{A}[(q-p_2)^2] = 6 g_{3\pi} + 2 g_{\rho\pi\pi} g_{\omega\rho\pi} \Big(D_{\rho^0}[s_{13}] + D_{\rho^+}[s_{41}] + D_{\rho^-}[s_{43}] \Big) + 2 g_{\rho'\pi\pi} g_{\omega\rho'\pi} \Big(D_{\rho'}[s_{13}] + D_{\rho'}[s_{41}] + D_{\rho'}[s_{43}] \Big),$$

$$C_d = \frac{g_{\omega\rho\pi}}{g_{\rho}} m_{\rho}^2 D_{\rho}[q], \qquad C'_d = \frac{g_{\omega\rho'\pi}}{g_{\rho'}} m_{\rho'}^2 D_{\rho'}[q].$$

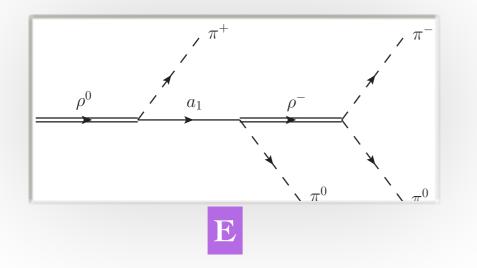


Fit to BaBar data for the ω channel plus a set of observables mentioned above. Improved precision wrt Avalos et al, Phys Rev D 107 056006 (2023), where this channel was a prediction

Channels E, F and G

$$\mathcal{L}_{a_1} = 2g_{a_1\rho\pi}(k \cdot q\rho_\mu a_1^\mu - \partial_\nu \rho^\mu \partial_\mu a_1^\nu)$$

N. Isgur, C. Morningstar, and C. Reader, Phys. Rev. D 39 1357(1989)



The explicit gauge invariant amplitude are:

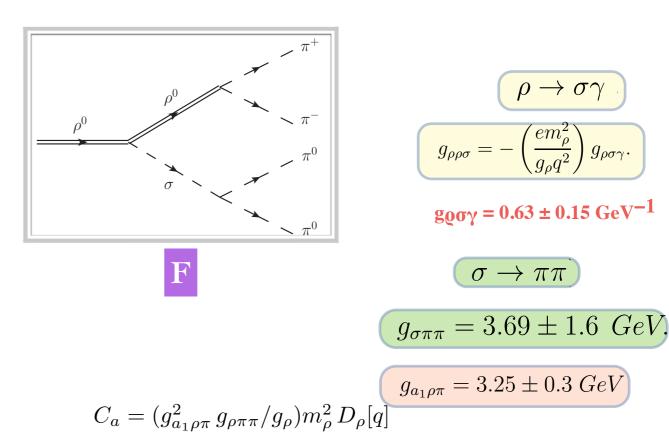
$$\mathcal{M}_{E}^{\mu}(p_{1}, p_{2}, p_{3}, p_{4}) = -i e C_{a} D_{\rho^{-}}[s_{43}] D_{a_{1}}[q - p_{1}] r_{43}^{\beta}$$

$$F^{\mu\alpha}(q - p_{1}, q) F_{\alpha\beta}(q - p_{1}, s_{43})$$

$$\mathcal{M}_{F_{\sigma}}^{\mu}(p_{1}, p_{2}, p_{3}, p_{4}) = i e C_{\sigma} D_{\sigma}[s_{24}] D_{\rho^{0}}[s_{31}]$$

$$F^{\mu\beta}(s_{31}, q) r_{31\beta},$$

 $\mathcal{L}_{S} = g_{V_{1}V_{2}S}V_{1\mu}V_{2}^{\nu}S + g_{SP_{1}P_{2}}SP_{1}P_{2}$



$$C_{\sigma} = \left(g_{\sigma\pi\pi} \, g_{\rho\rho\sigma} \, g_{\rho\pi\pi}\right)/g_{\rho} \right) m_{\rho}^2 \, D_{\rho}[q]$$

The gauge invariant tensor:

$$F_{\mu\alpha}(a,b) \equiv a \cdot b \ g_{\mu\alpha} - a_{\mu}b_{\alpha}.$$

The corresponding coupling to ϱ' is taken to be the same. As we will show later, this channel is very suppressed in the whole region of study and deviations from this assumption are expected to have a very small effect.

Channels E, F and G

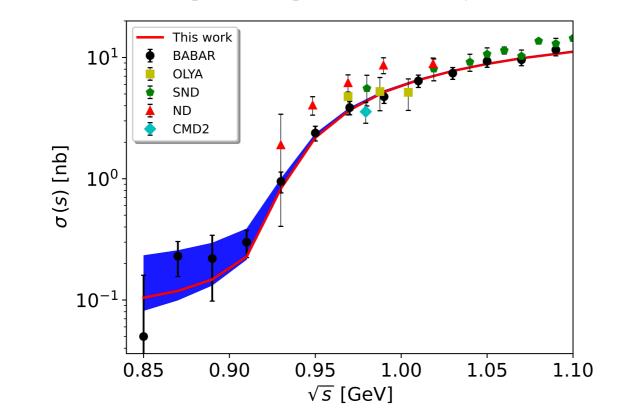
Non-resonant channel



The explicit gauge invariant amplitude is:

$$\mathcal{M}_{G}^{\mu} = i \, e \, (g_{\sigma\pi\pi})^2 \, D_{\sigma}[s_{42}] \, L^{\mu}(x_1, x_3).$$

The corresponding coupling to ϱ' is taken to be the same. As we will show later, this channel is very suppressed in the whole region of study and deviations from this assumption are expected to have a very small effect. For the f(980) we use the same coupling constants.



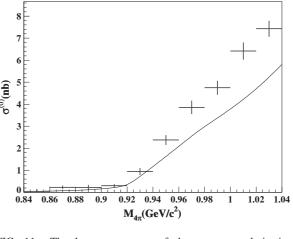


FIG. 11. The low-energy part of the vacuum polarization corrected measured undressed cross section (points with statistical uncertainties) compared to the theoretical prediction (line) from Ref. [36].

Total cross section $e^+e^- \rightarrow \pi^+\pi^-2\pi^0$ in the energy region from threshold to 1.1 GeV, compared to several experimental data.

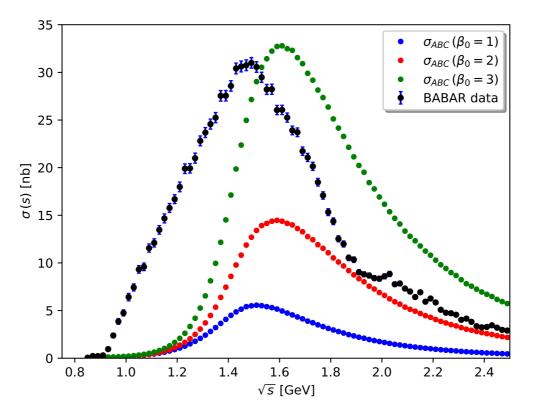
Low energy region dominated by the ω and σ channels (D) and (G). Error (shaded area) dominated by the $\sigma(600)$ parameters. In this region there is no effect due to variations of the parameters on channel (B)

Magnetic dipole moment from Babar data

We compute the cross section of the process

$$\sigma(q^2) = \int_{s_{1-}}^{s_{1+}} ds_1 \int_{s_{2-}}^{s_{2+}} ds_2 \int_{u_{1-}}^{u_{1+}} du_1 \int_{u_{2-}}^{u_{2+}} du_2 \int_{t_{0-}}^{t_{0+}} dt_0 \int_{t_{1-}}^{t_{1+}} dt_1 \\ \int_{t_{2-}}^{t_{2+}} dt_2 \frac{1}{4(2\pi)^8 \sqrt{k_1 \cdot k_2}} |\mathcal{M}|^2 FEF.$$

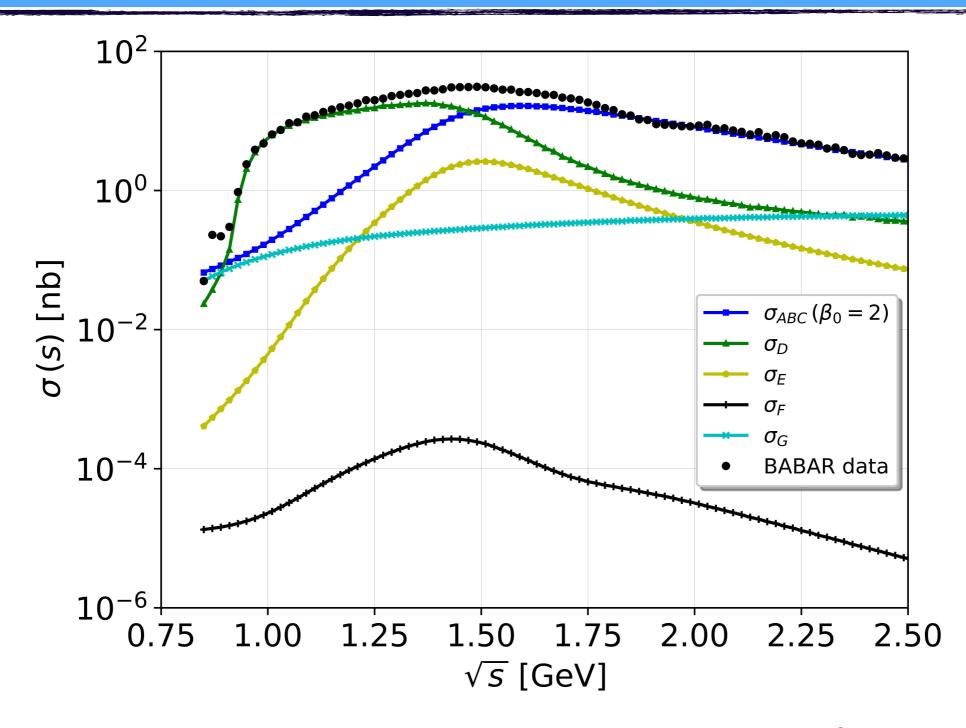
The kinematical variables are chosen following Ref.[Kumar]. The integration is performed numerically using a Fortran code and the Vegas subroutine



A, B, and C channels contribution to the total cross section for $e^+e^- \rightarrow \pi^+\pi^-2\pi^0$ and the BaBar experimental data. The strong dependence on the MDM is exhibited by choosing three values 1, 2 and 3.

R. Kumar, Phys. Rev. 185, 1865-1875 (1969).

Individual channels contribution

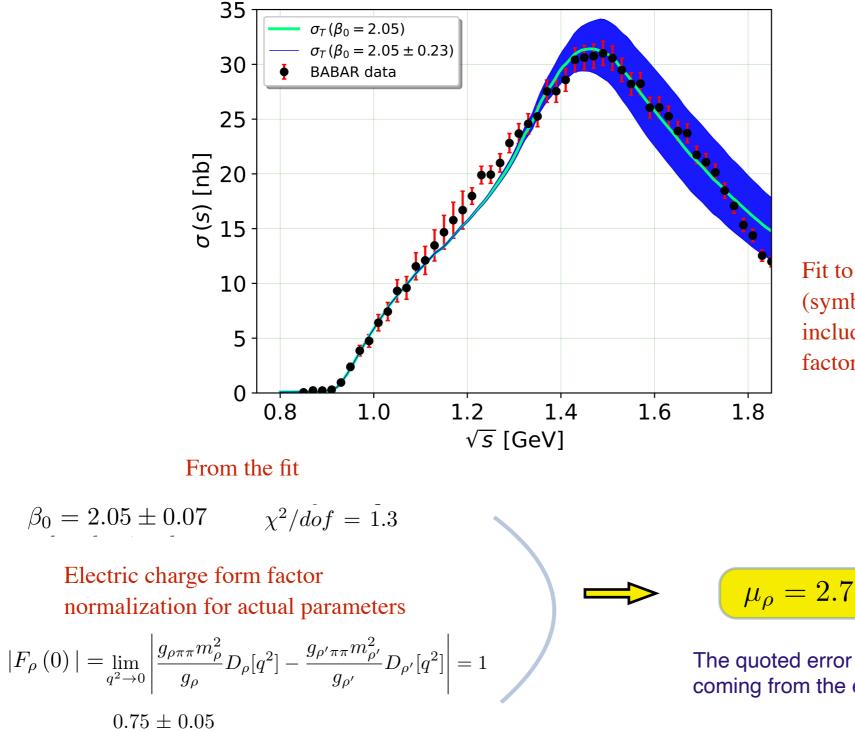


Individual channels contribution to the total cross section for $e^+e^- \rightarrow \pi^+\pi^-2\pi^0$ and the BaBar data.

Each channel includes the full reduced amplitudes for ϱ and ϱ' and their corresponding interferences, which are the dominant ones. The interferences among different channels are not shown but accounted in the analysis.

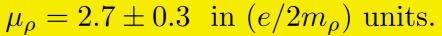
MDM, total cross section data

Provided all the parameters involved in our description are determined from other observables, we fit the data considering β_0 in the electromagnetic vertex as the only free parameter.



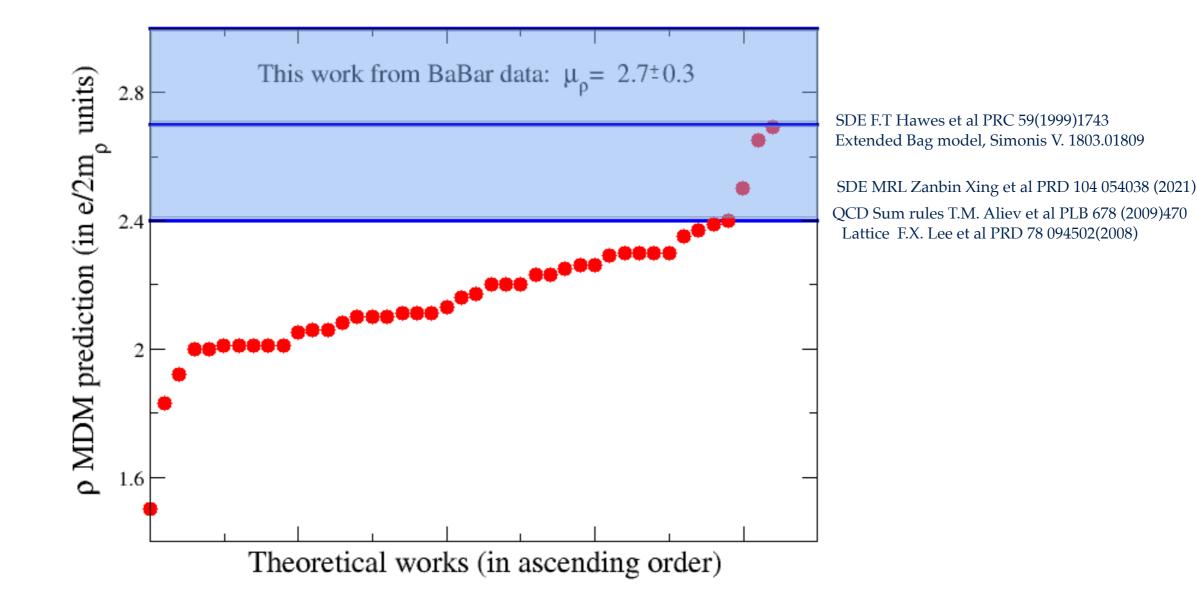
ica teórica

Fit to total cross section data from BaBar (symbols). The shaded area is the uncertainty including the one from electric charge form factor



The quoted error bar takes into account the uncertainties coming from the electric charge form factor

Vs. Theoretical Predictions



* We obtained the magnetic dipole moment of the ρ meson using published data from the BaBar Collaboration for the e+e- \rightarrow $\pi+\pi-2\pi0$ process, in the center of mass energy range from 0.9 to 1.8 GeV.

 $\mu_{
ho} = 2.7 \pm 0.3$ in $(e/2m_{
ho})$ units.

- * We describe the $\gamma * \rightarrow 4\pi$ vertex using a vector meson dominance model, including the intermediate resonant contributions relevant at these energies.
- We improved on the previous extracted value, where preliminary data from the same collaboration was used, by considering published data, better grounded values of the parameters involved and explicit gauge invariant description of the process.

Thanks for your attention !

