

Área de Física Teórica

Exploring Multiple QCD Phase Diagrams

Luis Alberto Hernández Rosas Universidad Autónoma Metropolitana

CONTENT

PHYSICS MOTIVATION

 LSMq AND THE EFFECTIVE POTENTIAL PHASE
 DIAGRAMS &
 FINAL
 REMARKS

HIC

QCD Phase Diagram \leftrightarrow Heavy-ion Collisions

Different **T** and μ_B combinations \rightarrow Different collision energies in HIC

QCD PHASE TRANSITION IS A NON PERTURBATIVE PHENOMENON

Linear Sigma model coupled to quarks

Effective theory which is usefull to emulate the low energy regime of Quantum Chromodynamics. It exhibits a symmetry spontaneously broken.

$$\mathscr{L} = \frac{1}{2} (\partial_{\mu}\sigma)^2 + \frac{1}{2} (\partial_{\mu}\vec{\pi})^2 + \frac{a^2}{2} (\sigma^2 + \vec{\pi}) - \frac{\lambda}{4} (\sigma^2 + \vec{\pi}^2)^2 + i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - ig\bar{\psi}\gamma^5\vec{\tau}.\vec{\pi}\psi - g\bar{\psi}\psi\sigma$$

letting the sigma-field to develop a vacuum expectation value v, we have

$$V^{tree}=-rac{a^2}{2} v^2+rac{\lambda}{4} v^4$$

$$m_{\sigma}^2 = 3\lambda v^2 - a^2$$
 , $m_0^2 = \lambda v^2 - a^2$, $m_f = gv$

$$a^2,\lambda,g$$

CHIRAL SYMMETRY RESTORATION

0.25

64 6

0.30

EFFECTIVE POTENTIAL

WE GO BACK TO 2018

- Effective potential with the LSMq at finite T and µ_q in the high- and low-T approximation.
- 2nd order and 1st order phase transition.
- CEP appears.

A. Ayala, S. Hernandez-Ortiz and <u>LAH</u>, Rev. Mex. Fis. **64**, no.3, 302-313 (2018)

IMPROVING RESULTS

- Effective potential with the LSMq at finite T and µ_q in the high- and low-T approximation.
- 2nd order and 1st order phase transition.
- CEP appears.
- Following LQCD curvature

A. Ayala, <u>LAH</u>, M. Loewe, J. C. Rojas and R. Zamora, Eur. Phys. J. A **56**, no.2, 71 (2020)

NEW INGREDIENTS

- Effective potential with the LSMq at finite T and μ_q in the high- and low-T approximation.
- 2nd order and 1st order phase transition.
- CEP appears.
- Following LQCD curvature
- Superstatistics

A. Ayala, M. Hentschinski, <u>LAH</u>, M. Loewe and R. Zamora, Phys. Rev. D **98**, no.11, 114002 (2018)

A. Ayala, S. Hernandez-Ortiz, <u>LAH</u>, V. Knapp-Perez and R. Zamora, Phys. Rev. D **101**, no.7, 074023 (2020)

HICs

1.

2.

3.

4.

5.

6.

7.

Phase transition Quark-Gluon Plasma → Chiral Symmetry

Baryon Chemical Potential Region of maximum baryon density (MPD-NICA)

Effective models Low energies of QCD

Non-central collisions Finite Impact Parameter b

Angular velocity Maximum value ~0.1 fm⁻¹ (~20 MeV)

Magnetic Fields Short pulse with maximum high ~ $(m_{\pi})^2$

Collision Energy Effects more important at low energies

ANGULAR VELOCITY

Initial angular velocity ω for Au + Au collisions at impact parameters b= 5, 8, 10 fm as functions of collision energy (UrQMD). Phys. Rev. D **102** (2020), 056019

lime evolution of angular velocity at b=7 fm and four different energies (PACIAE). Phys.Rev.C **104** (2021) 5, 054903

Initial angular velocity at mid rapidity as a function of the collision energy for impact parameters b = 5, 8, and 10 fm (UrQMD). Phys.Rev.C **101** (2020) 6, 064908

Angular velocity at fixed τ = 0.4 fm and η = 0 as function of collision energy (HIJING). Phys. Rev. C **93** (2016), 064907

MAGNETIC FIELDS

R. Snellings, J. Phys. 13, (2011) 055008

D. E. Kharzeev, L. D. McLerran and H. J. Warringa, Nucl. Phys. A 803, 227 (2008)

V. Voronyuk et al., Phys. Rev. C 83, 054911 (2011)

V. Skokov, A. Y. Illarionov and V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009)

QCD phase diagram

Temperature

J.Phys.Conf.Ser. 503 (2014) 012009

Temperature

QCD phase diagram

Linear Sigma model coupled to quarks

Effective theory which is usefull to emulate the low energy regime of Quantum Chromodynamics. It exhibits a symmetry spontaneously broken.

$$\mathscr{L} = \frac{1}{2} (\partial_{\mu}\sigma)^2 + \frac{1}{2} (\partial_{\mu}\vec{\pi})^2 + \frac{a^2}{2} (\sigma^2 + \vec{\pi}) - \frac{\lambda}{4} (\sigma^2 + \vec{\pi}^2)^2 + i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - ig\bar{\psi}\gamma^5\vec{\tau}.\vec{\pi}\psi - g\bar{\psi}\psi\sigma$$

letting the sigma-field to develop a vacuum expectation value v, we have

$$V^{tree} = -\frac{a^2}{2}v^2 + \frac{\lambda}{4}v^4$$

$$m_{\sigma}^2 = 3\lambda v^2 - a^2$$
 , $m_0^2 = \lambda v^2 - a^2$, $m_f = gv$

$$a^2,\lambda,g$$

EFFECTIVE POTENTIAL

PROPAGATORS

PHASE DIAGRAM Ω

- The T_c decreases as the Ω increases.
- Larger Ω moves the CEP to lower μ_q and higher T.
- The Ω not only modifies the conditions under which the phase transition occurs, but also the nature of the transition

PHASE DIAGRAM eB

- The T_c decreases as the eB increases.
- Larger eB moves the CEP to lower µ_q and higher T.
- The eB not only modifies the conditions under which the phase transition occurs, but also the nature of the transition

A. Ayala, <u>LAH</u>, M. Loewe and C. Villavicencio, Eur. Phys. J. A **57**, 21 no.7, 234 (2021)

THE TRUE BEGINNING

Inverse Magnetic Catalysis was obtained

A. Ayala, C. A. Dominguez, <u>LAH</u>, M. Loewe and R. Zamora, Phys. Rev. D **92**, no.9, 096011 (2015) 22

SUMMARY

- The LSMq has been successful in exploring the phase transition of QCD.
- The possible location of the CEP has been inspected
- \mathbf{T} - $\boldsymbol{\mu}_{\mathsf{R}}$ plane + eB, $\boldsymbol{\Omega}$, eE, $\boldsymbol{\mu}_{\mathsf{I}}$ or ...
- Translating phase diagram information into observables in HIC

Thanks for your attention!

lhernandez.rosas@izt.uam.mx
luis.hr@xanum.uam.mx

APCP

BARYON NUMBER FLUCTUATION

Conserved Charges: Net Baryon Number (B), Net Charge (Q), Net Strangeness (S)

Measured multiplicity N, $\langle \delta N \rangle = N - \langle N \rangle$ mean: $M = \langle N \rangle = C_1$ variance: $\sigma^2 = \langle (\delta N)^2 \rangle = C_2$ skewness: $S = \langle (\delta N)^3 \rangle / \sigma^3 = C_3 / C_2^{3/2}$ kurtosis: $\kappa = \langle (\delta N)^4 \rangle / \sigma^4 - 3 = C_4 / C_2^2$ Moments, cumulants and susceptibilities: 2^{nd} order: $\sigma^2 / M \equiv C_2 / C_1 = \chi_2 / \chi_1$ 3^{rd} order: $S\sigma \equiv C_3 / C_2 = \chi_3 / \chi_2$ 4^{th} order: $\kappa \sigma^2 \equiv C_4 / C_2 = \chi_4 / \chi_2$

A. Pandav (STAR collaboration), plenary talk at CPOD 2024, https:// conferences.lbl.gov/event/1376/contributions/8772/

BARYON NUMBER FLUCTUATION

A. Pandav (STAR collaboration), plenary talk at CPOD 2024, https:// conferences.lbl.gov/event/1376/contributions/8772/

SUMMARY 2.0

• As the energy approaches the CEP position, the fourth moment exhibits a sharp increase, suggesting that the CEP location can be identified by this abrupt rise. This behavior is also influenced by vorticity, as higher values of Ω shift the CEP to higher collision energies.