Electroweak precision tests and global fits

A. Freitas University of Pittsburgh

Electroweak precision tests and global fits

A. Freitas University of Pittsburgh

Electroweak precision tests and global fits

A. Freitas

University of Pittsburgh

- 1. Electroweak precision tests
- 2. Global electroweak fit
- **3.** Precision physics with future e^+e^- colliders
- 4. Theoretical calculations

Electroweak precision tests

Experimental data:

- LEP/SLC: Z(W)-boson properties
- LHC/TeVatron: M_{W} , M_{H} , m_{t} , $\sin^2 \theta_{eff}^{\ell}$
- Other experiments:
 *a*_μ, PVES, *G*_μ, *α*_s, ...

Fit theory model to data:

- SM parameters $M_Z, M_W, M_H, m_t, \alpha_s, \alpha^*, m_{f \neq t}^{**}$
 - * fixed ** mostly fixed/negligible
- BSM models:
 SM + new particle masses/couplings
- SMEFT/HEFT: SM + Wilson coeff. of higher-dim. ops.

Electroweak precision observables

Electroweak precision observables

Fermi constant (from μ decay): $G_{\mu} = \frac{\pi \alpha}{\sqrt{2}(1 - M_{\lambda \lambda}^2/M_{\pi}^2)M_{\lambda \lambda}^2}(1 + \Delta r)$ \rightarrow prediction of M_{W} $e^+e^- \rightarrow f\bar{f}$ for $E_{\rm CM} \sim M_{\rm Z}$: Width $\Gamma_Z = \sum_f \Gamma_{ff}$ Braching ratios $R_f = \Gamma_{ff} / \Gamma_Z$ $\sigma^{0} \approx \frac{12\pi \Gamma_{ee}\Gamma_{ff}}{(s-M^{2})^{2}+M^{2}\Gamma^{2}} = \frac{12\pi}{M^{2}}R_{e}R_{f}$ $\Gamma_{ff} = C[(g_{I}^{f})^{2} + (g_{R}^{f})^{2}]$ $\sum_{i=1}^{Z} (i) = g_{\mathsf{L}}^{f}, g_{\mathsf{R}}^{f}$

Asymmetries in $e^+e^- \rightarrow f\bar{f}$: $A_{\mathsf{FB}} \equiv \frac{\int_{\theta > \frac{\pi}{2}} d\sigma - \int_{\theta < \frac{\pi}{2}} d\sigma}{\int_{\theta > \frac{\pi}{2}} d\sigma + \int_{\theta < \frac{\pi}{2}} d\sigma} = \frac{3}{4} \mathcal{A}_e \mathcal{A}_f$ $A_{\mathsf{LR}} \equiv \frac{\sigma_{e_{\mathsf{L}}} - \sigma_{e_{\mathsf{R}}}}{\sigma_{e_{\mathsf{L}}} + \sigma_{e_{\mathsf{R}}}} = \mathcal{A}_{e}$ $\langle \mathcal{P}_{\tau} \rangle = -\mathcal{A}_{\tau}$ $\mathcal{A}_f = \frac{2(1 - 4\sin^2\theta_{\text{eff}}^J)}{1 + (1 - 4\sin^2\theta_{\text{eff}}^f)^2}$ $\sin^2 \theta_{\text{eff}}^f = \frac{g_R'}{2|Q_c|(a_R^f - a_L^f)}$

Z lineshape

• Deconvolution of initial-state QED radiation: $\sigma[e^+e^- \to f\bar{f}] = \mathcal{R}_{\text{ini}}(s, s') \otimes \sigma_{\text{hard}}(s')$

Subtraction of γ -exchange, γ -Z interference, box contributions:

 $\sigma_{\text{hard}} = \sigma_{\text{Z}} + \sigma_{\gamma} + \sigma_{\gamma\text{Z}} + \sigma_{\text{box}}$

■ *Z*-pole contribution:

$$\sigma_{\mathsf{Z}} = \frac{R}{(s - M_{\mathsf{Z}}^2)^2 + M_{\mathsf{Z}}^2 \Gamma_{\mathsf{Z}}^2} + \sigma_{\mathsf{non-res}}$$

 ■ Final-state radiation, initial-final interference, etc.
 → Monte-Carlo programs, consistently matched to fixed-order calculations

Z lineshape

- Deconvolution of initial-state QED radiation: $\sigma[e^+e^- \to f\bar{f}] = \mathcal{R}_{\text{ini}}(s, s') \otimes \sigma_{\text{hard}}(s')$
- Subtraction of γ -exchange, γ -Z interference, box contributions:

 $\sigma_{\text{hard}} = \sigma_{\text{Z}} + \sigma_{\gamma} + \sigma_{\gamma\text{Z}} + \sigma_{\text{box}}$

Z-pole contribution: Computed in SM (NLO)

$$\sigma_{\mathsf{Z}} = \frac{R}{(s - M_{\mathsf{Z}}^2)^2 + M_{\mathsf{Z}}^2 \Gamma_{\mathsf{Z}}^2} + \sigma_{\mathsf{non-res}}$$

- Final-state radiation, initial-final interference, etc.
 → Monte-Carlo programs, consistently matched to fixed-order calculations
- possible BSM physics?

LHC measurements

Forward-backward asymmetry: "forward" defined through event boost

lab frame:

center-of-mass frame:

→ main systematics: PDFs, QCD corrections

LHC measurements

W mass:

from $pp \to W^{\pm} \to \ell^{\pm} \nu$, using m_T and $p_{\ell,\perp}$ distributions

Ultimate precision at HL-LHC: $\delta M_{
m VV}\sim$ 5–10 MeV

Other masses

• m_t : Most precise measurement at LHC: $\delta m_t \sim 0.3$ GeV **PDG** '24 Theoretical ambiguity in mass def.: Hoang, Plätzer, Samitz '18

$$m_{t}^{CB}(Q_{0}) - m_{t}^{pole} = -\frac{2}{3}\alpha_{s}(Q_{0})Q_{0} + \mathcal{O}(\alpha_{s}^{2}Q_{0})$$

 $\approx 0.5 \pm 0.2_{pert.} \pm 0.2_{np.}GeV$

• $m_{b,c}$: $\delta m_{b,c} \sim 8 \text{ MeV}$ (QCD sum rules) Erler, Masjuan, Spiesberger '16,22

• $M_{\rm H}$: $M_{\rm H} = 125.10 \pm 0.09 \; {\rm GeV} \; ({\rm LHC})$

Strong coupling

PDG '24

PDG '21

• α_{s} :

- Most precise determination using Lattice QCD: $\alpha_{\rm S} = 0.1184 \pm 0.0008$ FLAG '21
- e^+e^- event shapes: $\alpha_s \sim 0.113...0.119$
 - → Large non-pertubative power corrections
 → Systematic uncertainties?

• Hadronic τ decays: $\alpha_{\rm S} = 0.1173 \pm 0.0017$

→ Non-perturbative uncertainties in OPE and from duality violation Pich '14; Boito et al. '15,18

• Hadron colliders: jj, W/Z, $t\bar{t}$, DIS

 \rightarrow Most precise determination from $pp \rightarrow Z + X$ at 8 TeV:

 $\alpha_{\rm S}=0.1183\pm0.0009$

ATLAS '23

Strong coupling

• Electroweak precision ($R_{\ell} = \Gamma_Z^{had} / \Gamma_Z^{\ell}$): $\alpha_s = 0.122 \pm 0.003$ PDG '24

 \rightarrow Negligible non-perturbative QCD effects Theory input: N⁴LO QCD corr. + NNLO EW

Caviat: R_{ℓ} could be affected by new physics

Electromagnetic coupling

•
$$\Delta \alpha \equiv 1 - \frac{\alpha(0)}{\alpha(M_Z)} \approx 0.059 = 0.0315_{\text{lept}} + 0.0276_{\text{had}}$$

a) $\Delta \alpha_{had}$ from $e^+e^- \rightarrow had$. using dispersion relation

 \rightarrow Current precision $\sim 10^{-4}$ Davier et al. '19; Jegerlehner '19; Keshavarzi, Nomura, Teubner '19

b) $\Delta \alpha_{had}$ from Lattice QCD (challenging but much progress)

Burger et al. '15 Cè et al. '22

Future improvements for methods (a) and (b):

- More precise exp./lattice data
- Full 4-loop pQCD for R-ratio / Adler function (for $|Q^2| \gg \Lambda_{QCD}$)
- More precise inputs for m_b , m_c , α_s
- $ightarrow \delta(\Delta lpha_{
 m had}) \lesssim 5 imes 10^{-5}$ likely achievable

y min y

Muon magnetic moment

10/30

 M_{Z} Very good agreement: χ^2 /d.o.f. = 49.5/47 (p = 37%) Γ_7 $M_{\rm W}$ [without M_{W} from CDF II] m_{t} Most quantities measured with $\sigma_{\sf had}$ 1%–0.1% precision R_b A^{μ}_{FB} A^b_{FB} (LEP) 1.8σ A_e (SLD) -2.3σ $\sin^2 heta_{
m eff}^\ell$ (TeV) H $\sin^2 \theta_{\rm eff}^{\ell}$ (LHC) $au_{ au}$ $g_{\mu}-2$ 3.2σ (data driven HVP incl. CMD-3 + BMW) -3 -2 -1 0 +1 +2 +3

 $(O_{\rm meas} - O_{\rm fit})/\Delta O$

Erler, Freitas (RPP) '24

11/30

Adding BSM oblique parameters:

 $\alpha T = \frac{\Sigma_{WW}(0)}{M_W} - \frac{\Sigma_{ZZ}(0)}{M_7}$

 $\rightarrow T = 0.08 \pm 0.02$

Including M_W from CDF II: Good agreement: χ^2 /d.o.f. = 58.5/47 (p = 12%)

Adding BSM oblique parameters:

Adding BSM oblique parameters:

Adding BSM oblique parameters:

$$\alpha T = \frac{\Sigma_{WW}(0)}{M_W} - \frac{\Sigma_{ZZ}(0)}{M_Z}$$
$$\frac{\alpha}{4s^2c^2}S = \frac{\Sigma_{ZZ}(M_Z^2) - \Sigma_{ZZ}(0)}{M_Z} + \frac{s^2 - c^2}{sc}\frac{\Sigma_{Z\gamma}(M_Z^2)}{M_Z} - \frac{\Sigma_{\gamma\gamma}(M_Z^2)}{M_Z}$$

 $\langle a \rangle$

Dim-6 SMEFT studies confirm that T parameter effectively absorbs M_{W} shift de Blas, Pierini, Reina, Silvestrini '22 Bagnaschi et al. '22; Balkin et al. '22

Objective: Comparison of measurements for pseudo-obs. (M_{W} , sin² θ_{eff}^{ℓ} , ...) with SM theory predictions

	$\delta M_{\sf VV}$	$\delta \sin^2 heta_{ ext{eff}}^\ell$		
	[MeV]	[10 ⁻⁵]		
now	± 8	± 13		
1-loop	\pm 450	$+$ ± 1000		
2-/3-loop QCD	± 70	± 45		
ferm. 2-loop EW	± 50	± 90		
bos. 2-loop EW	± 2	± 1		
leading 3-loop	\pm 5	± 25		

computed from G_{μ}

Experimental precision sensitive to 2-/3-loop effects

Marciano, Sirlin '80 Djouadi et al. '88 Chetyrkin, Kühn, Steinhauser '95 Freitas et al. '00 Awramik, Czakon '03 Awramik, Czakon, Freitas, Weiglein '04

Awramik, Czakon, Freitas '06

Faisst, Kühn, Seidensticker, Veretin '03

Theory calculations: Status

Many seminal works on 1-loop and leading 2-loop corrections

Veltman, Passarino, Sirlin, Marciano, Bardin, Hollik, Riemann, Degrassi, Kniehl, ...

Full 2-loop results for M_W , Z-pole observables

Freitas, Hollik, Walter, Weiglein '00
Awramik, Czakon '02
Onishchenko, Veretin '02
Awramik, Czakon, Freitas, Weiglein '04
Awramik, Czakon, Freitas '06
Hollik, Meier, Uccirati '05,07
Awramik, Czakon, Freitas, Weiglein '04
Awramik, Czakon, Freitas '06

Approximate 3- and 4-loop results (enhanced by Y_t and/or N_f)

Chetyrkin, Kühn, Steinhauser '95 Faisst, Kühn, Seidensticker, Veretin '03 Boughezal, Tausk, v. d. Bij '05 Schröder, Steinhauser '05 Chetyrkin et al. '06 Boughezal, Czakon '06 Chen, Freitas '20

Precision physics with future e^+e^- colliders

circular colliders: high-lumi run at \sqrt{s} ~ M_Z
linear colliders: radiative return e⁺e⁻ \rightarrow \gamma Z

\sqrt{S}	M_Z	$2M_W$	240–250 GeV	350–380 GeV
ILC	100 fb $^{-1}$	500 fb $^{-1}$	2 ab $^{-1}$	200 fb $^{-1}$ (10 pts.)
CLIC	—	—	—	1 ab $^{-1}$
FCC-ee	$150 { m ~ab}^{-1}$	10 ab $^{-1}$ (2 pts.)	5 ab $^{-1}$	1 ab $^{-1}$ (8 pts.)
CEPC	$100 { m ~ab^{-1}}$	6 ab $^{-1}$ (3 pts.)	20 ab $^{-1}$	1 ab $^{-1}$?

 \rightarrow talks by J. Guimaraes da Costa, G. Bernardi

Precision physics with future e^+e^- colliders

	Current exp.	ILC250	CEPC	FCC-ee
M _W [MeV]	8	2.4	0.5	0.4
Γ_Z [MeV]	2.3	1.5	0.025	0.025
$R_{\ell} = \Gamma_{\rm Z}^{\rm had} / \Gamma_{\rm Z}^{\ell} [10^{-3}]$	25	20	2	1
$R_b = \Gamma_Z^{\overline{b}} / \Gamma_Z^{\text{had}} [10^{-5}]$	66	23	4.3	6
$\sin^2 \theta_{eff}^{\ell} [10^{-5}]$	13	2	0.3	0.4

Precision physics with future e^+e^- colliders (SMEFT)

20/30

Extension of SM by higher-dimensional operators:

Wilson '69 Weinberg '79

SMEFT dim-6 operators provide framework for comparing experiments

de Blas, Durieux, Grojean, Gu, Paul '19

Theory calculations: Uncertainties

- To probe new physics, compare EWPOs with SM theory predictions
- Need to take theory error into account:

	Current exp.	Current th.	CEPC	FCC-ee
M_{W} [MeV]	11–12	4	0.5	0.4
Γ_Z [MeV]	2.3	0.4	0.025	0.025
$R_\ell = \Gamma_Z^{had} / \Gamma_Z^\ell [10^{-3}]$	25	5	2	1
$R_b = \Gamma_Z^b / \Gamma_Z^{\text{had}} [10^{-5}]$	66	10	4.3	6
$\sin^2 heta_{ m eff}^\ell$ [10 ⁻⁵]	13	4.5	0.3	0.4

 \blacksquare Theory error estimate is not well defined, ideally $\Delta_{th} \ll \Delta_{exp}$

Common methods:

- Count prefactors (α , N_c , N_f , ...)
- Extrapolation of perturbative series
- Renormalization scale dependence
- Renormalization scheme dependence

Estimated impact of future higher-order calculations					Freitas et al. '19	
	Current th.	Projected th. [†]	CEPC	FCC-ee		
$M_{\sf W}$ [MeV]	4	1	0.5	0.4		
Γ_Z [MeV]	0.4	0.15	0.025	0.025		
$R_{\ell} = \Gamma_{\rm Z}^{\rm had} / \Gamma_{\rm Z}^{\ell} [10^{-3}]$	5	1.5	2	1		
$R_b = \Gamma_Z^b / \Gamma_Z^{\text{had}} \left[10^{-5} \right]$	10	5	4.3	6		
$\sin^2 heta_{ m eff}^\ell$ [10 ⁻⁵]	4.5	1.5	0.3	0.4		

[†] Theory scenario: $\mathcal{O}(\alpha \alpha_s^2)$, $\mathcal{O}(N_f \alpha^2 \alpha_s)$, $\mathcal{O}(N_f^2 \alpha^2 \alpha_s)$, leading 4-loop ($N_f^n = \text{at least } n \text{ closed fermion loops}$)

Note: Estimates (based on extrapolation of perturb. series and prefactors) are unreliable and only provide a rough guess

Also need NNLO corrections for subtracted "backgrounds"

More precise MC tools for multi-photon emission, hadronization, etc.

Jadach, Skrzypek '19

WW threshold : W mass and width

Scans of possible E₁ E₂ data taking energies and luminosity fractions f (at the E₂ point)

A -minimum of $\Delta\Gamma_{W}$ =0.91 MeV with Δm_{W} =0.55 MeV taking data at E₁=156.6 GeV E₂=162.4 GeV f=0.25 yields Δm_{W} =0.47 MeV (as single par)

> B- minimum of Δm_W =0.28 MeV $\Delta \Gamma_W$ =3.3 MeV with E₁=155.5 GeV E₂=162.4 GeV f=0.95 yields Δm_W =0.28 MeV (as single par)

C- minimum of $\Delta \Gamma_{W}$ =0.96 MeV + Δm_{W} =0.41 MeV with E₁=157.5 GeV E₂=162.4 GeV f=0.45 yields and Δm_{W} =0.37 MeV (as single par)

Δm_W, ΔΓ_W: error on W mass and width from fitting both Δm_W: error on W mass from fitting only m_W

WW threshold

b) Non-resonant contributions are important

• Full $\mathcal{O}(\alpha)$ calculation of $e^+e^- \rightarrow 4f$ Denner, Dittmaier, Roth, Wieders '05

- EFT expansion in $\alpha \sim \Gamma_W/M_W \sim \beta^2$ Beneke, Falgari, Schwinn, Signer, Zanderighi '07
 - NLO corrections with NNLO Coulomb correction ($\propto 1/\beta^n$): $\delta_{th}M_{W} \sim 3 \text{ MeV}$ Actis, Beneke, Falgari, Schwinn '08
 - Adding NNLO corrections to $ee \rightarrow WW$ and $W \rightarrow f\bar{f}$ and NNLO ISR: $\delta_{th}M_{W} \lesssim 0.6 \text{ MeV}$

Top-quark mass

From $e^+e^- \rightarrow t\bar{t}$ at $\sqrt{s} \sim 350$ GeV:

Impact of theory modelling:

$$\delta m_{t}^{\overline{\text{MS}}} = []_{exp}$$

$$\oplus [50 \text{ MeV}]_{QCD}$$

$$\oplus [10 \text{ MeV}]_{mass def.}$$

$$\oplus [70 \text{ MeV}]_{\alpha_{s}}$$

$$> 100 \text{ MeV}$$

25/30

From $e^+e^- \rightarrow t\bar{t}$ at $\sqrt{s} \sim 350$ GeV:

Impact of theory modelling:

$$\delta m_{t}^{\overline{\text{MS}}} = []_{exp}$$

$$\oplus [50 \text{ MeV}]_{QCD}$$

$$\oplus [10 \text{ MeV}]_{mass def.}$$

$$\oplus [70 \text{ MeV}]_{\alpha_{s}}$$

$$> 100 \text{ MeV}$$

future improvements:

 $\begin{array}{ll} [20 \text{ MeV}]_{exp} & (\text{FCC-ee, CEPC}) \\ \oplus [30 \text{ MeV}]_{QCD} & (\text{h.o. resumm., N}^4\text{LO?}) \\ \oplus [10 \text{ MeV}]_{mass def.} \\ \oplus [15 \text{ MeV}]_{\alpha_{\text{S}}} & (\delta \alpha_{\text{S}} \lesssim 0.0002) \\ \hline \leqslant \text{ FO MeV} \end{array}$

 \lesssim 50 MeV

Strong coupling

• α_s:

- Electroweak precision ($R_{\ell} = \Gamma_Z^{had} / \Gamma_Z^{\ell}$): $\alpha_s = 0.122 \pm 0.003$ PDG '18
 - → Negligible non-perturbative QCD effects

FCC-ee: $\delta R_\ell \sim 0.001$

 $\Rightarrow \delta \alpha_{\rm S} < 0.0001$

Theory input: N³LO EW corr. + leading N⁴LO to keep $\delta_{th}R_{\ell} \lesssim \delta_{exp}R_{\ell}$

Caviat: R_{ℓ} could be affected by new physics

Strong coupling

• α_s:

- Electroweak precision ($R_{\ell} = \Gamma_Z^{had} / \Gamma_Z^{\ell}$): $\alpha_s = 0.122 \pm 0.003$ PDG '18
 - → Negligible non-perturbative QCD effects

FCC-ee: $\delta R_\ell \sim 0.001$

 $\Rightarrow \delta \alpha_{\rm S} < 0.0001$

Caviat: R_{ℓ} could be affected by new physics

•
$$R = \frac{\sigma[ee \rightarrow had.]}{\sigma[ee \rightarrow \mu\mu]}$$
 at lower \sqrt{s}
e.g. CLEO ($\sqrt{s} \sim 9$ GeV): $\alpha_{s} = 0.110 \pm 0.015$
Kühn, Steinhauser, Teubner '07

 \rightarrow dominated by *s*-channel photon, less room for new physics \rightarrow QCD still perturbative

naive scaling to 50 ab $^{-1}$ (BELLE-II): $\delta \alpha_{\rm S} \sim 0.0001$

Theoretical calculations

Experimental precision requires inclusion of **multi-loop corrections** in theory

Integrals over loop momenta:

 $\int d^4q_1 d^4q_2 f(q_1, q_2, p_1, k_1, ..., m_1, m_2, ...)$

Challenges:

- **1.** O(1000) O(10000) integrals
- 2. Individual integrals can be divergent (drop out for physical results)
 - \rightarrow Regularization, renormalization
- 3. Multi-dimensional integrations, depending on multiple mass/momentum scales

General approaches:

- Analytical
- Numerical
- Approximations (expansions), specialized techniques, ...

Analytical techniques:

Reduction to master integrals (MIs), reduced number of ints. by 10-100

- \rightarrow computationally intensive
- → public programs Reduze, FIRE, LiteRed, KIRA, FiniteFlow, ... von Manteuffel, Studerus '12; Smirnov '13,14; Lee '13; Maierhoefer, Usovitsch, Uwer '17; Peraro '19
- Not fully understood function space of MIs (Goncharov polylogs, iterated elliptic integrals, hypergeometric functions, ...)

Work best for problems with few (no) masses

Numerical techniques:

- Multi-dim. numerical integrations:
 - in momentum space: 4L dimensions (L = # of loops)
 - in Feynman par. space: P 1 dimensions (P = # of propagators)
 - \rightarrow slowly converging, limited precision
- Numerical instabilites, in particule for diagrams with physical cuts
- Works best for problems with many masses

Calculational techniques

29/30

<u>Summary</u>

- Electroweak precision tests have played an important role in testing the Standard Model
- Today they probe physics beyond the Standard Model at TeV scale
- More data from LHC and future e^+e^- colliders will push the reach into the multi-TeV regime
- Electroweak fits rely on detailed theory calculations for QED effects, backgrounds, SM predictions, etc.
- Future precision data requires progress in fixed-order loop calculations, MC tools and non-perturbative QCD effects

Summary

- Electroweak precision tests have played an important role in testing the Standard Model
- Today they probe physics beyond the Standard Model at TeV scale
- More data from LHC and future e^+e^- colliders will push the reach into the multi-TeV regime
- Electroweak fits rely on detailed theory calculations for QED effects, backgrounds, SM predictions, etc.
- Future precision data requires progress in fixed-order loop calculations, MC tools and non-perturbative QCD effects

