Global fits to three-neutrino oscillations

Mariam Tórtola IFIC, CSIC/Universitat de València

MINISTERIO DE CIENCIA E INNOVACIÓN

Neutrinos oscillate

© Johan Jarnestad/The Royal Swedish Academy of Sciences

2

The three-flavour v picture

neutrino mixing

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\alpha} & 0 & 0 \\ 0 & e^{i\beta} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 3 mixing angles: θ₁₂, θ₂₃, θ₁₃
 3 CP phases: 1 Dirac + 2 Majorana
 3 masses: m₁, m₂, m₃
 - \Rightarrow absolute neutrino mass: m_0
 - \Rightarrow two mass splittings:

 $\Delta m^2_{21}, \Delta m^2_{31}$

neutrino mass spectrum

Solar neutrinos

Reactor neutrinos

Atmospheric neutrinos

Accelerator neutrinos

Solar neutrinos

Reactor neutrinos

Atmospheric neutrinos

Accelerator neutrinos

Solar sector: θ_{12} , Δm^2_{21}

Atmospheric sector: θ_{23} , Δm^2_{31}

Reactor sector (SBL): θ_{13} , Δm^2_{31}

Accelerator sector: θ_{23} , Δm^2_{31}

Solar sector: θ_{12} , Δm^2_{21}

Atmospheric sector: θ_{23} , Δm^2_{31}

Reactor sector (SBL): θ_{13} , Δm^2_{31}

Accelerator sector: θ_{23} , Δm^2_{31}

Solar sector: θ_{12} , θ_{13} , Δm^2_{21}

Reactor sector (SBL): θ_{13} , Δm^2_{31}

Atmospheric sector: θ_{23} , θ_{13} , Δm^2_{31} , δ

Accelerator sector: θ_{23} , θ_{13} , Δm^2_{31} , δ

Solar sector: θ_{12} , θ_{13} , Δm^2_{21}

Reactor sector (SBL): θ_{13} , Δm^2_{31}

Atmospheric sector: θ_{23} , θ_{13} , Δm^2_{31} , δ

Accelerator sector: θ_{23} , θ_{13} , Δm^2_{31} , δ

Compensate low statistics in subleading oscillation effects searches

Ex: enhance sensitivity to MO and CP violation

Compensate low statistics in subleading oscillation effects searches

Ex: enhance sensitivity to MO and CP violation

Exploit synergies among experiments

Ex: solar params before KamLAND Ex: $\theta_{13}\neq 0$ before reactor measurement

Compensate low statistics in subleading oscillation effects searches

Ex: enhance sensitivity to MO and CP violation

Exploit synergies among experiments

Ex: solar params before KamLAND Ex: $\theta_{13}\neq 0$ before reactor measurement

Compensate low statistics in subleading oscillation effects searches

Ex: enhance sensitivity to MO and CP violation

Exploit synergies among experiments

Ex: solar params before KamLAND Ex: $\theta_{13}\neq 0$ before reactor measurement

Compensate low statistics in subleading oscillation effects searches

Ex: enhance sensitivity to MO and CP violation

10 NOvA 25 T2K BI 20 Global 215 ⊽15 10 5 0.5 0.01.0 2.01.5 δ/π

Exploit synergies among experiments

Ex: solar params before KamLAND Ex: $\theta_{13}\neq 0$ before reactor measurement

Reveal tensions among data

Ex: Δm^2_{21} measurement in solar and KamLAND Ex: δ_{CP} preference in NOvA and T2K (NO)

Compensate low statistics in subleading oscillation effects searches

Ex: enhance sensitivity to MO and CP violation

30 10 NOvA 25 T2K LBL 20 Global دً**×** 10 5 0.5 0.01.0 2.01.5 δ/π

Exploit synergies among experiments

Ex: solar params before KamLAND Ex: $\theta_{13}\neq 0$ before reactor measurement

Reveal tensions among data

Ex: Δm^2_{21} measurement in solar and KamLAND Ex: δ_{CP} preference in NOvA and T2K (NO)

Compensate low statistics in subleading oscillation effects searches

Ex: enhance sensitivity to MO and CP violation

Exploit synergies among experiments

Ex: solar params before KamLAND Ex: $\theta_{13}\neq 0$ before reactor measurement

Reveal tensions among data

Ex: Δm^2_{21} measurement in solar and KamLAND Ex: δ_{CP} preference in NOvA and T2K (NO)

Three-neutrino oscillation parameters

Denton et al, Snowmass Neutrino Frontier: NF01 Report [arXiv:2212.00809]

3v oscillations global fit

https://globalfit.astroparticles.es/

de Salas et al, **JHEP 02 (2021) 071**

Updated here with...

- Standard Solar Model B23
- SK-IV solar data
- Daya Bay full dataset
- RENO full dataset
- Full SK I-V atmos χ^2 tables
- DeepCore 9yr data

Not yet included...

 Latest T2K & NOvA results presented in Nu'24

— w SK-atm - - - w/o SK.atm

relative $l\sigma$ uncert

parameter	best fit $\pm 1\sigma$	3σ range	-	
$\Delta m_{21}^2 \left[10^{-5} \text{eV}^2 \right]$	$7.55\substack{+0.22 \\ -0.20}$	6.98-8.19	2.7 %	
$\begin{aligned} \Delta m_{31}^2 & [10^{-3} \text{eV}^2] \text{ (NO)} \\ \Delta m_{31}^2 & [10^{-3} \text{eV}^2] \text{ (IO)} \end{aligned}$	$2.50{\pm}0.02$ $2.40{\pm}0.02$	2.43 - 2.57 2.33 - 2.46	0.9 %	mass ordering?
$\sin^2 \frac{\theta_{12}}{10^{-1}}$	$3.04{\pm}0.16$	2.57 - 3.55	5.4%	
$\frac{\sin^2 \theta_{23}}{10^{-1}}$ (NO) $\frac{\sin^2 \theta_{23}}{10^{-1}}$ (IO)	$5.60^{+0.13}_{-0.22} \\ 5.57^{+0.14}_{-0.20}$	4.32 - 5.96 4.34 - 5.93	4.8%	octant?
$\frac{\sin^2 \theta_{13}}{10^{-2}}$ (NO) $\frac{\sin^2 \theta_{13}}{10^{-2}}$ (IO)	$2.20^{+0.07}_{-0.04}\\2.23^{+0.05}_{-0.06}$	2.05 - 2.38 2.06 - 2.39	2.5%	
$\frac{\delta}{\pi}$ (NO) $\frac{\delta}{\pi}$ (IO)	$1.12^{+0.16}_{-0.12}\\1.50^{+0.13}_{-0.14}$	0.76 – 2.00 1.11 – 1.87	10-18 %	maximal CP violation??

SSM HZ model - MB22m

with SK atmospheric

The solar sector

Solar experiments have measured neutrino disappearance for ~ 50 years

The solar sector

New Results

Standard Solar Models B23/SF-III

Herrera & Serenelli (2023) https://doi.org/10.5281/zenodo.10174170

• "GS98" :: Grevesse & Sauval (1998), Space Sci. Rev., 85, 161.

- "AGSS09" :: Asplund et al. (2009), ARA&A, 47, 481.
- "C11" :: Caffau et al. (2011), Sol. Phys., 268, 255.
- "AAG21" :: Asplund et al. (2021), A&A 653, A141.
- "MB22m" :: Magg et al. (2022), A&A 661, A140. (Meteoritic)
- "MB22p" :: Magg et al. (2022), A&A 661, A140. (Photospheric)

♦MB22m: high Z

♦ AAG21: low Z

Super-K IV D/N spectrum (2970 days)

SK Collab, PRD 109 (2024) 092001

The solar sector

- \diamond θ_{12} measurement dominated by solar data
- Δm^{2}_{21} better measured by KamLAND.
- ♦ new SK-IV data reduce the tension in Δm_{21}^2 measurement (~2σ → ~1σ deviation)

The reactor sector

The reactor sector

→ Daya Bay: 3158-day data: $sin^2 2\theta_{13} = 0.0853 \pm 0.0024$ (2.8%)

[Daya Bay Collaboration] PRL 130 (2023),161802

♦ RENO: 3800-day data: $sin^2 2\theta_{13} = 0.0920 \pm 0.0059$ (6.4%)

S. Jeon [RENO Collaboration] @ ICHEP2024

The atmospheric sector

The atmospheric sector

New Results

Super-K I-V atmospheric data (6511.3 live days, expanded FV)

SK Collab, PRD 109 (2024) 072014

IceCube DeeCore 9.3 yrs

IceCube Collab, arXiv:2405.02163

The atmospheric sector

 $(\sin^2\theta_{23} - \Delta m^2_{31})$ regions (99% CL) from individual experiments

- Great agreement among all the experiments
- Best sensitivity obtained at T2K (closely followed by NOvA and DeepCore)
- IC-DeepCore starts being competitive with LBL accelerator experiments

The octant of θ_{23}

◆ **LBL** combination slightly prefer UO (NO) and LO(IO) with $∆χ^2 = 0.3-0.4$

- ♦ LBL + ATM prefers UO (NO) and LO(IO) with $Δ\chi^2 \sim 0.3$ -1
- ♦ **REAC** breaks the degeneracy in favor of UO (NO and IO) with $Δ\chi^2 \sim 3.5-5.2$ over LO
- ♦ Global analysis show a milder preference for UO with $\Delta \chi^2 \sim 2.0$ (2.9) for NO (IO)

The octant of θ_{23}

• Lower-octant slightly disfavoured with $\Delta \chi^2 \ge 2.0$ (2.9) for NO (IO)

 \Rightarrow w/o SK: LO more disfavoured, with $~\Delta\chi^2 \sim 4.2$

• Maximal mixing disfavoured with $\Delta \chi^2 = 2.5$ (3.1) for NO (IO)

28

Mariam Tórtola (IFIC-CSIC/UValencia)

Matter effects on neutrino oscillations

When neutrinos pass trough matter, the interactions with the particles in the medium induce an effective potential for neutrinos.

L. Wolfenstein, 1978

$$f_{\text{matt}} = \pm \sqrt{2}G_F \operatorname{diag}(N_e - \frac{1}{2}N_n, -\frac{1}{2}N_n, -\frac{1}{2}N_n)$$
 (+) neutrinos (-) antineutrinos

 \rightarrow modifies the mixing between flavor states and mass eigenstates, leading to a different oscillation probability with respect to vacuum oscillations.

Matter effects in solar neutrinos

→ resonance condition (MSW effect) A = $\cos 2\theta$ is satisfied for neutrinos for $\Delta m^2 > 0$ and antineutrinos for $\Delta m^2 < 0$.

Matter effects observed in solar neutrino data in agreement with the presence of a resonance as predicted above:

→ since solar neutrinos are v_e : $\Delta m_{21}^2 > 0 \rightarrow m_2 > m_1$

Matter effects in atmospheric v's

 Atmospheric neutrinos interact with the Earth mantle and core

 \checkmark no matter effects in $v_{\mu} \rightarrow v_{\tau}$ channel

✓ MSW resonance in $v_{\mu} \rightarrow v_{e}$ channel

$$\tan 2\theta_m = \frac{\frac{\Delta m^2}{4E} \sin 2\theta}{\frac{\Delta m^2}{4E} \cos 2\theta \mp \sqrt{2}G_F N_e}$$

(-) neutrinos (+)antineutrinos

Matter effects on the atmospheric neutrino flux are sensitive to the mass ordering

Matter effects in atmospheric v's

At E~ 3-8 GeV: MSW resonance for neutrinos and NO mass spectrum

For antineutrinos \Rightarrow the resonance appears in IO

These matter effects are harder to observe since $P_{\mu e} \propto \theta_{13}$ $\rightarrow sign(\Delta m_{31}^2)$ unknown

♦ T2K and NOvA separate analyses prefer NO with $Δ\chi^2 ≈ 0.2-0.4$

Tension between T2K and NOvA results in NO

→ The LBL combination (T2K + NOvA + MINOS) prefer IO with $\Delta \chi^2 \approx 2.6$

Tension between LBL and NOvA results in IO

◆ T2K and NOvA separate analyses prefer NO with Δχ² ≈ 0.2-0.4

- ◆ LBL prefer IO with $\Delta \chi^2 \approx 2.6$ (tension NO)
- ◆ LBL + REAC prefer NO with $\Delta \chi^2 \approx 0.7$ (tension in Δm^2_{31} measurement in IO)

- ◆ SK-atm prefers NO with $\Delta \chi^2$ = 5.69 (5.23) for θ_{13} constrained (free)
- ♦ From the global fit: $\Delta \chi^2$ (IO-NO) = 7.7 (3.1) w SK-atm (w/o SK-atm)
 - assuming Wilk's theorem: 2.8σ (1.8σ) preference for NO w SK-atm (w/o SK-atm)

Neutrino mass scale

* Relaxed to $\Sigma m_v < 0.11 \text{ eV}$ (Naredo-Tuero, arXiv:2407.13831)

de Salas et al, JHEP 02 (2021) 071

- v-oscillations: Δm²_{ij}
- ♦ β-decay: $m_\beta = f(m_i, \theta_{ij})$ m_β < 1.1 eV (90% CL)
- ♦ 0νββ: $m_{\beta\beta} = f(m_i, \theta_{ij}, \varphi_i)$
- ♦ Cosmology: Σm_i Σm_v < 0.12 (0.15) eV NO (IO) (95%CL)</p>

Results from the combined bayesian analysis:

- \Rightarrow weak/moderate preference for NO driven by oscillation data (2.0 σ)
- $\Rightarrow \beta$ -decay and $0\nu\beta\beta$ have little impact on MO.
- \Rightarrow cosmological data enhances the preference for NO from 2.0 to 2.7

The CP phase

H. Tanaka, TAUP 2019

Super-Kamiokande (atm)

 δ_{BF} = 1.4π (NO and IO)
 preference driven by v_e excess in sub-GeV amb multi-GeV e-like samples

SK Collab, PRD 109 (2024) 072014

T2K

 $\delta_{BF} \approx 3\pi/2 \text{ due to better agreement with } observed v_e \text{ and } \bar{v}_e \text{ events}$

Т2К	(NO)	-п/2	0	+π/2	π	OBS
v mode	1Re 0 d.e.	74.5	62.3	50.6	62.8	75
	1Re 1 d.e.	7.0	6.1	4.9	5.9	1 5
\overline{v} mode	1Re 0 d.e.	17.1	19.6	21.7	19.3	1 5

The CP phase

Super-Kamiokande (atm)

 δ_{BF} = 1.4π (NO and IO)
 preference driven by v_e excess in sub-GeV amb multi-GeV e-like samples

SK Collab, PRD 109 (2024) 072014

Slight tension T2K & NOvA for NO

The CP phase

NO: mismatch between NOvA and T2K and SK atmospheric results

 $\delta_{BF} = 1.12\pi$; $\delta = \pi/2$ (0) disfavored at 4.3 σ (2.9 σ)

• IO: all experiments prefer $\delta \approx 3\pi/2$

 $\delta_{BF} = 1.5\pi$; $\delta = \pi/2$ (π) disfavored at 6.8 σ (3.9 σ)

Neutrino oscillations in the near future

> precision and mass ordering

See P. Ochoa-Ricoux's talk

V. Cerrone @ NOW 2024

- \diamond 3 σ sensitivity in ~7 years of data
- Combined analysis with atmospheric experiments will enhance the sensitivity

Neutrino oscillations in the near future

IceCube Upgrade + JUNO

ORCA + JUNO

A. Terliuk @ NOW 2024

 Up to 3σ sensitivity to neutrino mass ordering (5σ with JUNO)

 4-6σ sensitivity to neutrino MO by 2030 (below 3σ with JUNO only)

Next generation of v experiments

Best-case oscillation scenarios:

 $>5\sigma$ mass ordering sensitivity in 1 year $>3\sigma$ CPV sensitivity in 3.5 years Worst-case oscillation scenarios:

>5 σ mass ordering sensitivity in 3 years +10yr: CPV over 75% of δ_{CP} values at >3 σ

Next generation of v experiments

Hyper-Kamiokande

>5σ CPV discovery for >60% of δ_{CP}
 1σ resolution of δ_{CP} in 10 yrs:
 ~20° (~6°) for δ_{CP} = -90° (0°)

S. Moriyama @ Neutrino'24

>5σ sensitivity to mass
 ordering for all values of
 θ₂₃ for NO

Tensions in global fits to 3v oscillations ?

The solar-KamLAND Δm^2_{21} tension

 \Rightarrow tension between preferred value of $\Delta m^2{}_{21}$ from KamLAND and solar data

 $\Rightarrow \Delta m^2_{21}$ preferred by KamLAND predicts steep upturn and smaller D/N asymmetry

♦ NSI ($\varepsilon \sim 0.3$) can reconcile both results:

 \Rightarrow flatter spectrum at intermediate E-region

 \Rightarrow larger D/N asymmetries can be expected

Escrihuela et al, PRD80 (2009); Coloma et al, PRD96 (2017)

Maltoni & Smirnov, EPJ 2015

The T2K-NOvA δ_{CP} tension

• NSI may include new sources of CP violation besides δ_{CP} : $\epsilon_{\alpha\beta} = |\epsilon_{\alpha\beta}| \exp(i\phi_{\alpha\beta})$

 Maximal CP-violating NSI couplings ε_{eµ} and ε_{eτ} of order ~ 0.1-0.2 may reconcile T2K and NOvA results.

The T2K-NOvA δ_{CP} tension

Non-unitary mixing analysis of T2K and NOvA (normal ordering)

Forero et al, PRD 2022

• NU includes additional sources of CP violation (ϕ_{21})

The tension is not alleviated since the new phase affects equally T2K & NOvA

Summary

Global fits to neutrino oscillations exploit complementarities of data sets to enhance the sensitivity of individual experiments, improving our knowledge of the three-neutrino oscillation picture.

From the updated three-neutrino global fit:

 \checkmark precise determinations for most parameters (~ 1 - 5%)

✓ slight preference for $\theta_{23} > 45^{\circ}$ - LO disfavoured by $\Delta \chi^2 \ge 2.0$ (2.9) for NO (IO) ✓ normal ordering preferred over IO with $\Delta \chi^2 = 7.7$ (3.1) w SK (w/o SK) ✓ $\delta_{BF} = 1.12\pi$ (1.5 π) for NO (IO) ; $\delta = \pi/2$ disfavored at 4.3 σ (6.8 σ) for NO (IO)

♦ In the near future, global fits (JUNO+) will be useful to enhance sensitivities.

- Next generation experiments (DUNE, HyperK) will provide sensitivities above 3σ for CPV and mass ordering
- Tensions among datasets revealed by global fits might point to the existence of new physics BSM.