Physics Opportunities of Coherent Elastic neutrino-Nucleus Scattering Phenomenology

Diego Aristizabal

USM Chile

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

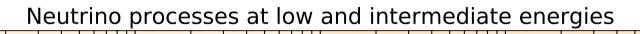
 Neutrino processes at different energy scales

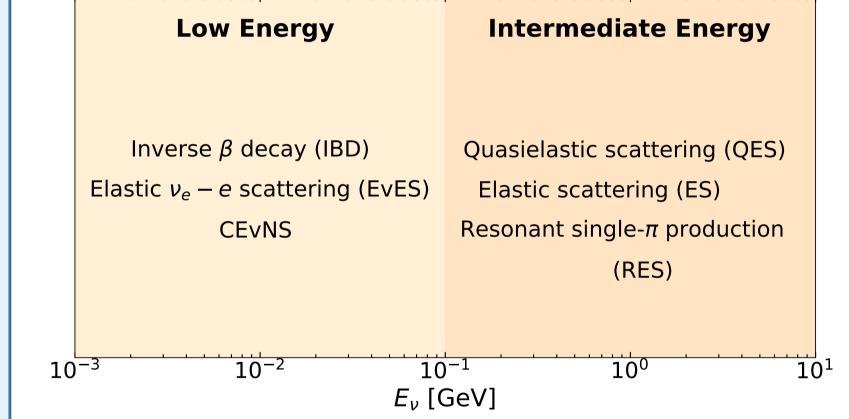
Intermediate regime

 A few comments on theoretical uncertainties
 Low-energy regime

CEvNS: Cross section, environments and

measurements


Measurements: COHERENT


CEvNS physics with the vBDX-DRIFT detector

The case of DM detectors: PandaX-4T & XENONnT

Final remarks

Why Coherent Elastic v-nucleus Scattering (CEvNS)?

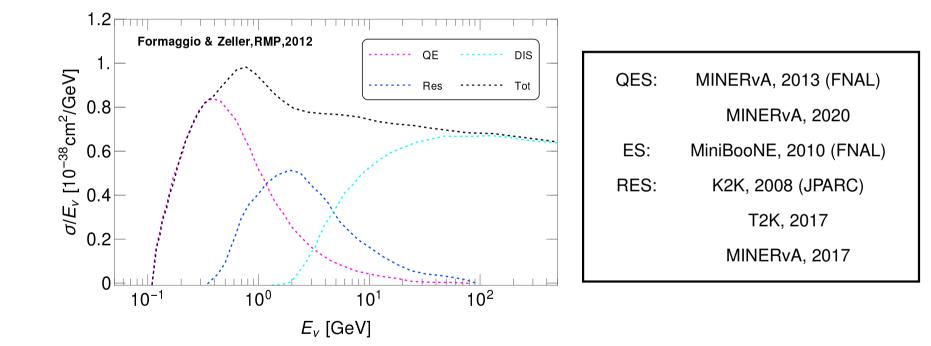
Why Coherent Elastic v-nucleus

Scattering (CEvNS)?

 Neutrino processes at different energy scales

 Intermediate regime
 A few comments on theoretical uncertainties
 Low-energy regime

CEvNS: Cross section, environments and measurements


Measurements: COHERENT

CEvNS physics with the vBDX-DRIFT detector

The case of DM detectors: PandaX-4T & XENONnT

Intermediate regime

	QES (CC)	ES (NC)	RES (NC & CC)
Why Coherent Elastic v-nucleus	$\nu_{\mu} + n \rightarrow \mu^{-} + p$	$v + p \rightarrow v + p \overline{v} + p \rightarrow \overline{v} + p$	$ \nu_{\mu}N \rightarrow \mu^{-}N^{*} \rightarrow \mu^{-}\pi N' $
Scattering (CEvNS)? • Neutrino processes at different energy scales	$\overline{\nu}_{\mu} + p \rightarrow \mu^{+} + n$	$v + n \rightarrow v + n$ $\overline{v} + n \rightarrow \overline{v} + n$	$ u_{\mu}N ightarrow u_{\mu}N^{*} ightarrow u_{\mu}\pi N^{\prime}$

Theoretically calculations are challenging Theoretical uncertainties are large!

Diego Aristizabal, USM, November 8, 2024

Scattering (CEvNS)? Neutrino processes at different energy scales Intermediate regime A few comments on theoretical uncertainties

• Low-energy regime

CEvNS: Cross section,

Measurements: COHERENT

CEvNS physics with the

The case of DM detectors:

PandaX-4T & XENONnT

vBDX-DRIFT detector

environments and

measurements

Dominant effects

Pauli blocking: Final-state fermion states must be assured an unoccupied quantum state.

Fermi motion: Nucleons in the nuclear environment are not at rest.

<u>Reinteractions</u>: The recoiling nucleon can reinteract in the nuclear medium

 $v_{\mu}n \rightarrow \mu^{-}p$ cross section in ⁵⁶Fe 1.2 D. Aristizabal 1.0 σ[10⁻³⁸ cm²] ^{90 80} ^{80 80} Environmental effects are $\sim 20\% - 30\%$ ⁵⁶ Fe Nuclear effects are relevant Effects in MC generators: GENNIE & NuWro Differences $\sim 10\%$ 0.2 Free nucleon Pauli blocking 0.0 2.0 1.0 1.5 0.5 $E_{\nu}[\text{GeV}]$

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

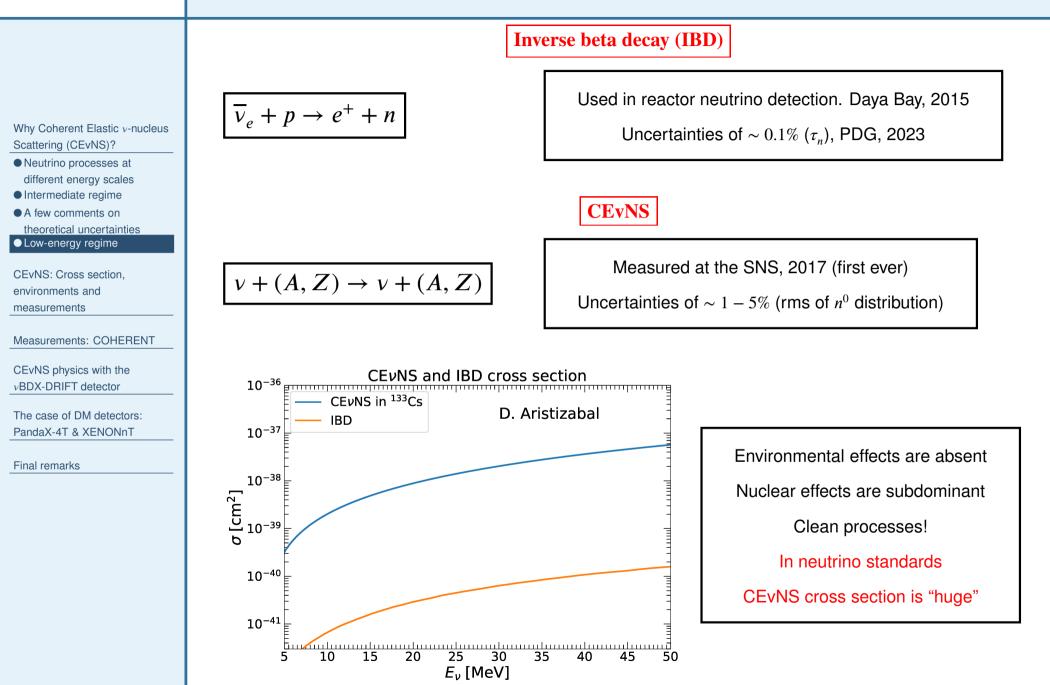
 Neutrino processes at different energy scales
 Intermediate regime

A few comments on

theoretical uncertainties

Low-energy regime

CEvNS: Cross section, environments and


measurements

Measurements: COHERENT

CEvNS physics with the vBDX-DRIFT detector

The case of DM detectors: PandaX-4T & XENONnT

Low-energy regime

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and

measurements

- CE_vNS cross section
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- Physics program (opportunities)
- Possible BSM scenarios
- Ongoing projects worldwide

Measurements: COHERENT

CEvNS physics with the vBDX-DRIFT detector

The case of DM detectors: PandaX-4T & XENONnT

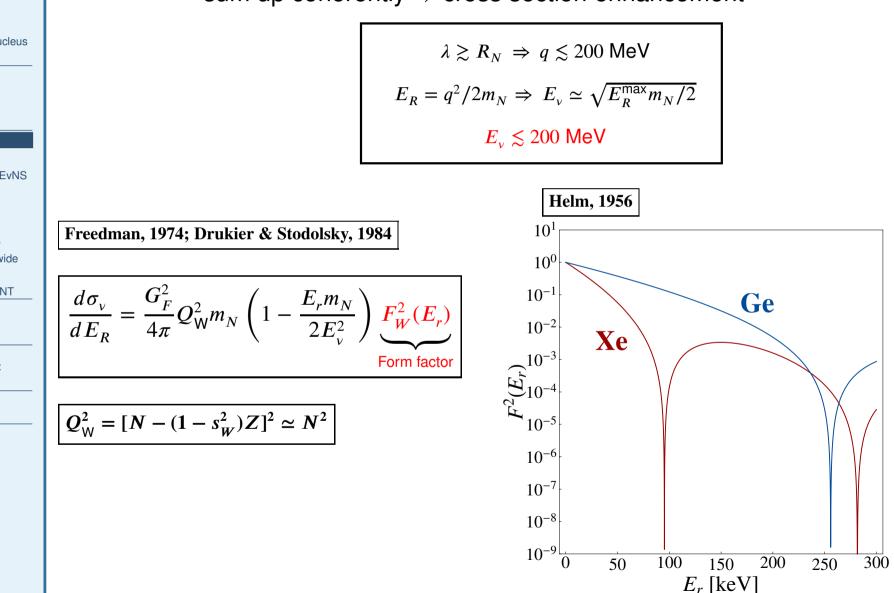
Final remarks

CEvNS: Cross section, environments and measurements

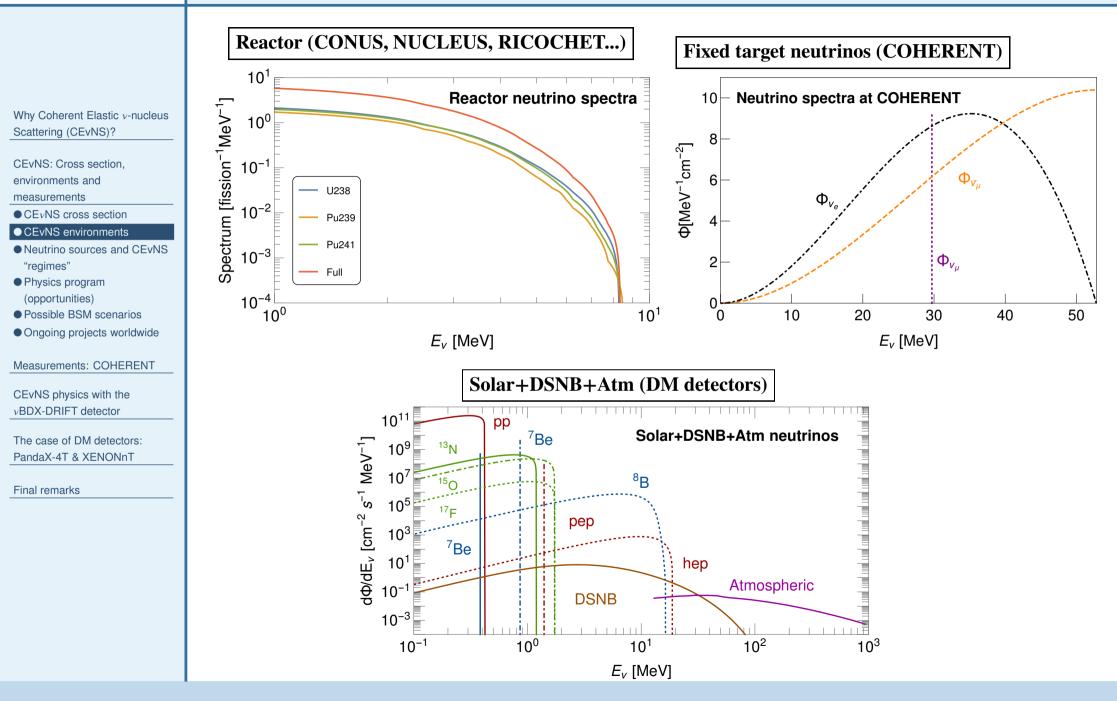
CEvNS cross section

 $CE_{\nu}NS$ occurs when the neutrino energy E_{ν} is such that nucleon amplitudes sum up coherently \Rightarrow cross section enhancement

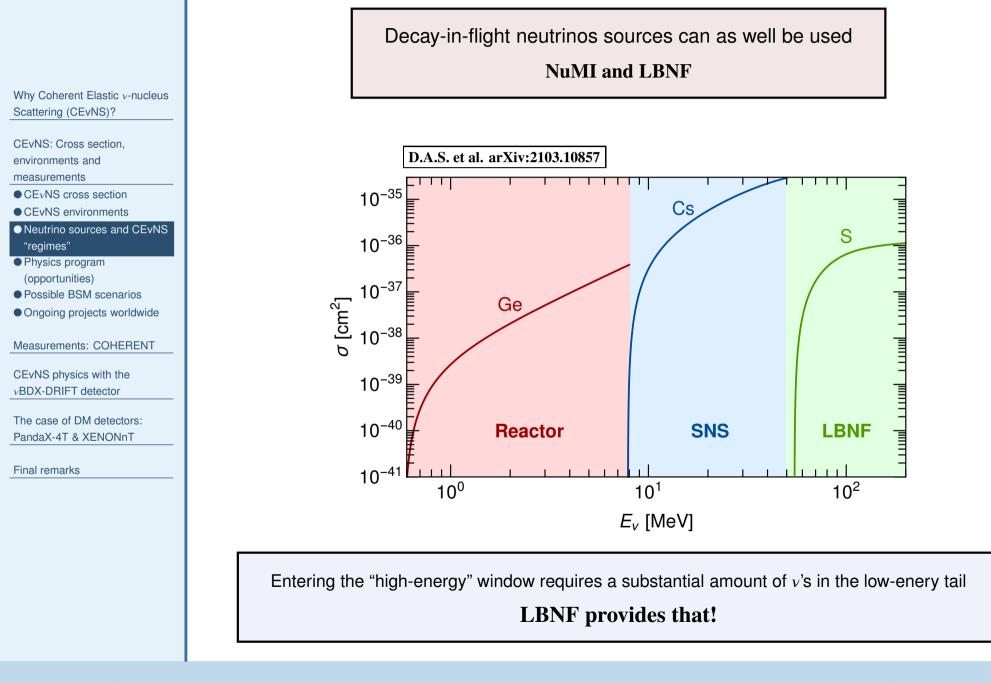
Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?


CEvNS: Cross section, environments and

- easurements ● CEvNS cross section
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- Physics program (opportunities)
- Possible BSM scenarios
- Ongoing projects worldwide


Measurements: COHERENT

CEvNS physics with the vBDX-DRIFT detector


The case of DM detectors: PandaX-4T & XENONnT

CEvNS environments

Neutrino sources and CEvNS "regimes"

Physics program (opportunities)

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and

measurements

- CEvNS cross section
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- Physics program
 (opportunities)
- Possible BSM scenarios
- Ongoing projects worldwide

Measurements: COHERENT

CEvNS physics with the vBDX-DRIFT detector

The case of DM detectors: PandaX-4T & XENONnT

Final remarks

The combination of measurements from different sources

and different detectors define a rather rich physics program

CEvNS measurements

CONUS (Ge), CONNIE (Si), COHERENT (Ar, CsI, Nal) vBDX-DRIFT (CS₂, CF₄, C₈H₂₀Pb), XLZD (LXe), Captain-Mills (LAr)

SM measurements

Measurements of $\sin^2 \theta_W$ at a new energy scale

... Complementary to DUNE measurements in electron channel

Measurements of neutron distributions in e.g. Ge, C, S, F, Pb...

BSM searches

Neutrino NSI, NGI, Dark-neutrino interactions, dark sectors

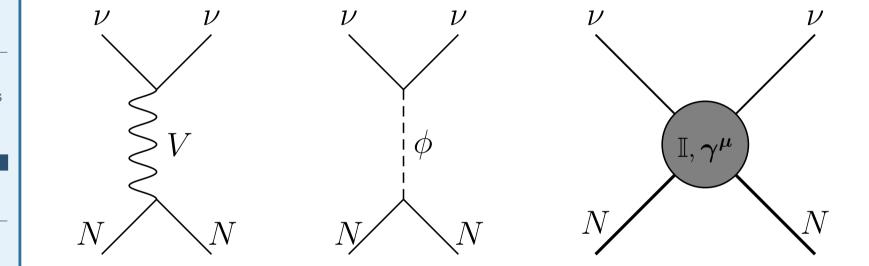
Possible BSM scenarios

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and

measurements

- CEvNS cross section
- CEvNS environments
- Neutrino sources and CEvNS "regimes"
- Physics program (opportunities)


Possible BSM scenarios

Ongoing projects worldwide

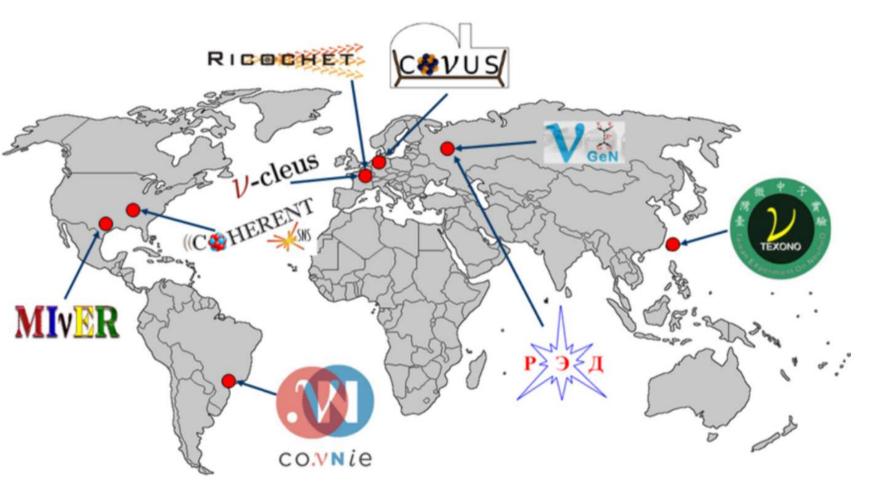
Measurements: COHERENT

CEvNS physics with the vBDX-DRIFT detector

The case of DM detectors: PandaX-4T & XENONnT

Ongoing projects worldwide

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?


CEvNS: Cross section, environments and measurements

- CEvNS cross section
- CEvNS environments
- Neutrino sources and CEvNS
- "regimes"● Physics program
- (opportunities) • Possible BSM scenarios
- Ongoing projects worldwide

Measurements: COHERENT

CEvNS physics with the vBDX-DRIFT detector

The case of DM detectors: PandaX-4T & XENONnT

- Argentina vIOLETA (Neutrino Interaction Observation with a Low Energy Threshold Array)
- Mexico SBC (Scintillating Bubble Chamber)
- Belgium SoLid (Search for oscillations with Lithium 6 detector)
- South Korea NEON (Neutrino Elastic-scattering Observation experiment with Nal[TI] crystal)

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

Measurements: COHERENT

 Measurements with Csl (2017)

• Updated CsI data (2021)

CEvNS physics with the vBDX-DRIFT detector

The case of DM detectors: PandaX-4T & XENONnT

Final remarks

Measurements: COHERENT

Measurements with CsI (2017)

CEvNS observed by COHERENT more than 40 years after its prediction

Akimov et. al. 2017

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

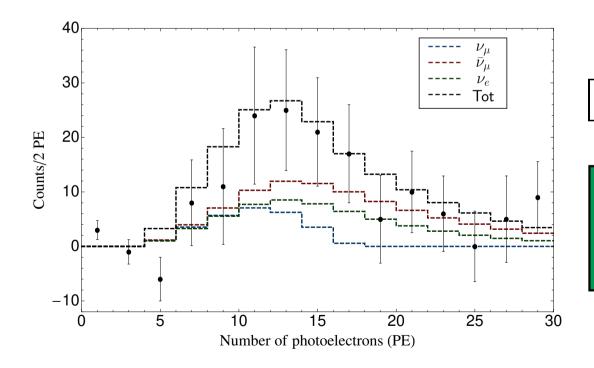
Measurements: COHERENT

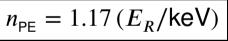
Measurements with Csl (2017)

Updated CsI data (2021)

CEvNS physics with the vBDX-DRIFT detector

The case of DM detectors: PandaX-4T & XENONnT

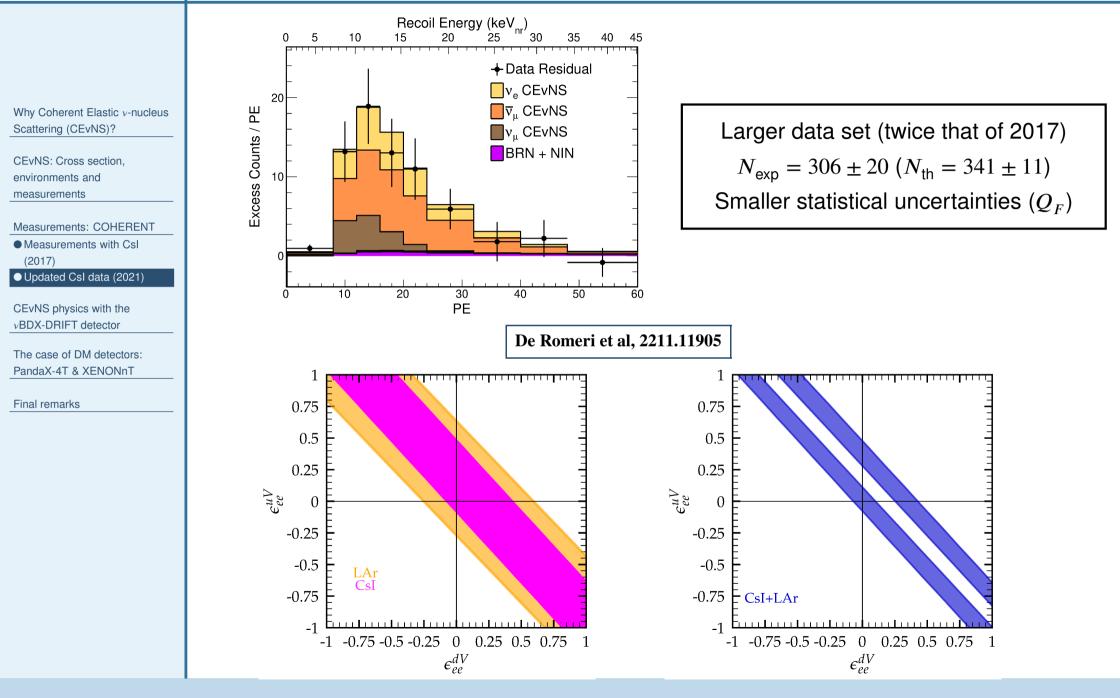

Final remarks


COHERENT uses neutrinos produced at the SNS

@ Oak Ridge National Laboratory in the collision p - Hg

$$\pi^+
ightarrow \mu^+ +
u_\mu$$

 $\mu^+
ightarrow e^+ +
u_e + \overline{
u}_\mu$


Presence of CE_VNS favored @ the 6.7 σ level. Data consistent with SM @ the 1 σ

Measured in LAr CENNS-10 2003.10630 Ge expected in 2024

Updated CsI data (2021)

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

Measurements: COHERENT

CEvNS physics with the vBDX-DRIFT detector

- Project
- vBDX-DRIFT: Basics
- \bullet Signals in CS₂ and CF₄
- Measurements of R_n via CEvNS
- Neutron density distributions: Results
- Neutrino Nonstandard Interactions (NSI)

The case of DM detectors: PandaX-4T & XENONnT

Final remarks

CEvNS physics with the vBDX-DRIFT detector

Project

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

Measurements: COHERENT

CEvNS physics with the vBDX-DRIFT detector

Project

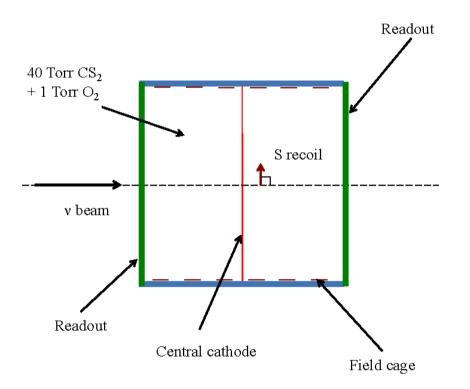
- vBDX-DRIFT: Basics
- Signals in CS₂ and CF₄
- Measurements of R_n via CEvNS
- Neutron density distributions: Results
- Neutrino Nonstandard Interactions (NSI)

The case of DM detectors: PandaX-4T & XENONnT

Final remarks

Collaboration started back in 2021: D.A.S. (USM), Bhaskar Dutta (TAMU) Joshua Barrow (Minnesota), Doojin Kim (South Dakota) Daniel Snowden-Ifft (Oxy College), Louis Strigari (TAMU)

Goal: CEvNS Physics and LDM searches with directional detectors


Strategy: Use Fermilab neutrino beamlines (pion decay-in-flight) Levarage on low-energy tail & abundant flux

Directional LDM signals & sensitivities: Work in progress Neutron backgrounds at the MINOS hall: 2210.08612 [hep-ex] (PRD) CEvNS measurements: 2103.10857 [hep-ph] (PRD)

vBDX-DRIFT: Basics

☐ Directional low pressure TPC detector

 \Box Operates with CS₂ (other gases possible CF₄, C₈H₂₀Pb...)

Solution → NRs mainly in sulfur induce ionization

 \Box CS₂ ions used to transport the ionization to the readout planes

Multi-wire proportional chambers

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and

measurements

Measurements: COHERENT

CEvNS physics with the vBDX-DRIFT detector

Project

● vBDX-DRIFT: Basics

 $\bullet \, {\rm Signals}$ in ${\rm CS}_2$ and ${\rm CF}_4$

 Measurements of R_n via CEvNS

 Neutron density distributions: Results

 Neutrino Nonstandard Interactions (NSI)

The case of DM detectors: PandaX-4T & XENONnT

Signals in CS₂ and CF₄

CEvNS: Cross section, environments and

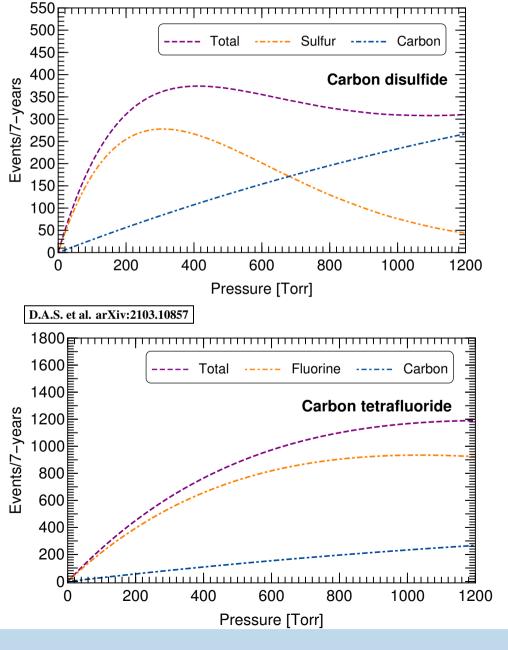
measurements

Measurements: COHERENT

CEvNS physics with the vBDX-DRIFT detector

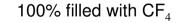
Project

Project


• vBDX-DRIFT: Basics

ullet Signals in CS_2 and CF_4

- Measurements of R_n via CEvNS
- Neutron density distributions: Results
- Neutrino Nonstandard Interactions (NSI)


The case of DM detectors: PandaX-4T & XENONnT

Final remarks

Signal peaks at 400 Torr

Expected signal: 370 events

Expected signal: 880 events

Measurements of R_n via CEvNS

 $F_W(q^2) = \frac{1}{Q_W} \left[Z g_V^p F_V^p(q^2) + (A - Z) g_V^n F_V^n(q^2) \right]$

 \Rightarrow F_V^p : Depends on $R_p \Rightarrow$ known at 0.1% level ($e^- - N$ scattering)

 \Rightarrow F_V^n : Depends on $R_n \Rightarrow$ poorly known (hadron experiments)

$$N_{\rm CEvNS} = N_{\rm CEvNS}(R_n)$$

$$N_{\mathsf{CEvNS}}^{\mathsf{Exp}} \Rightarrow R_n$$

Miranda et al, JHEP 05 (2020)

 12

 10

$$10$$
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 2
 0
 10
 2
 0
 10
 2.0
 2.0
 2.0
 2.0
 2.0
 2.0
 2.0
 2.0
 2.0
 2.0
 2.0
 2.0
 2.0
 2.0

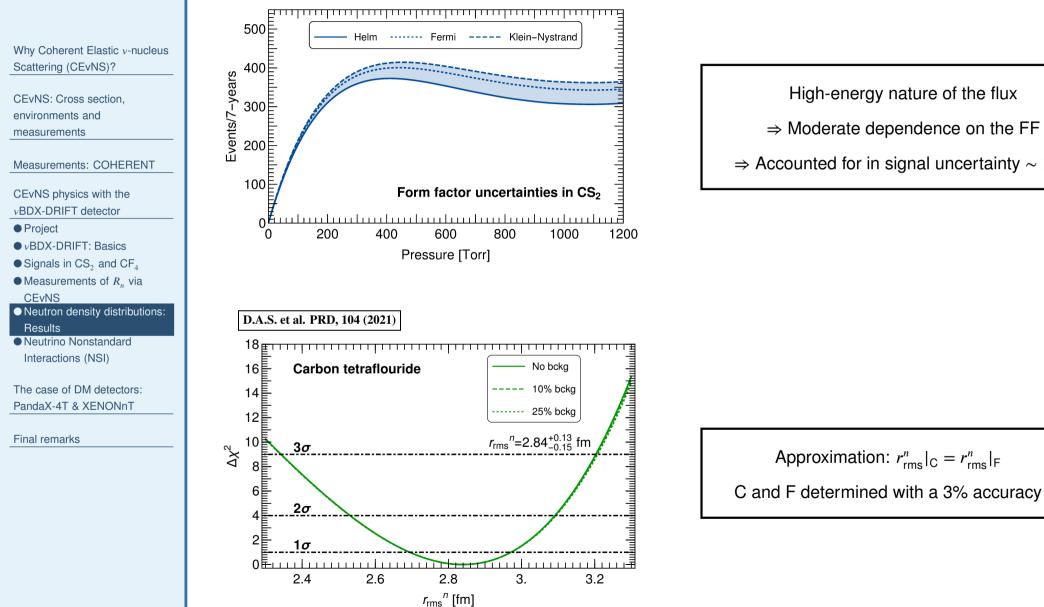
COHERENT 90% CL limits Csl: $R_n^{Cs} = R_n^{I}$: $R_n \subset [3.4, 7.2]$ fm Ar: $R_n < 4.33$ fm

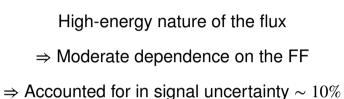
Why Coherent Elastic v-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

Measurements: COHERENT

CEvNS physics with the vBDX-DRIFT detector

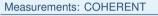

Project


- vBDX-DRIFT: Basics
- Signals in CS₂ and CF₄
- Measurements of R_n via CEvNS
- Neutron density distributions: Results
- Neutrino Nonstandard Interactions (NSI)

The case of DM detectors: PandaX-4T & XENONnT

Neutron density distributions: Results

D.A.S. et al. PRD, 104 (2021)



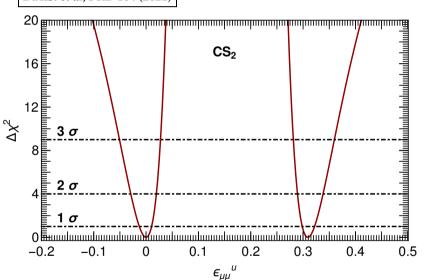
$$\mathcal{L}_{\text{NSI}} \sim G_F \bar{\nu}_a \gamma_\mu (1 - \gamma_5) \nu_b \, q \gamma^\mu \epsilon^q_{ab} q$$

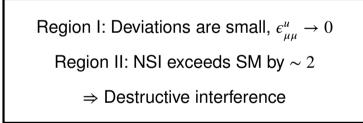
Initial state flavor, v_{μ} : Only $\epsilon_{\mu b}$ parameters are testable

D.A.S. et al, PRD 104 (2021)

Why Coherent Elastic v-nucleus

Scattering (CEvNS)?


CEvNS: Cross section, environments and measurements


CEvNS physics with the vBDX-DRIFT detector

- Project
- vBDX-DRIFT: Basics
- $\bullet \, {\rm Signals}$ in ${\rm CS}_2$ and ${\rm CF}_4$
- Measurements of R_n via CEvNS
- Neutron density distributions: Results

 Neutrino Nonstandard Interactions (NSI)

The case of DM detectors: PandaX-4T & XENONnT

vBDX-DRIFT CS ₂ (7-years)		COHERENT CsI (1-year)	
$\epsilon^{u}_{\mu\mu}$	$[-0.013, 0.011] \oplus [0.30, 0.32]$	$\epsilon^{u}_{\mu\mu}$	$[-0.06, 0.03] \oplus [0.37, 0.44]$
$\epsilon^{u}_{e\mu}$	[-0.064, 0.064]	$\epsilon^{u}_{e\mu}$	[-0.13, 0.13]

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

Measurements: COHERENT

CEvNS physics with the ν BDX-DRIFT detector

The case of DM detectors: PandaX-4T & XENONnT

Multi-ton DM detectors

• Impact of reactor neutrinos

Actual measurements

• What can you learn from these data?

Survival probability and event rate

Sensitivities

Final remarks

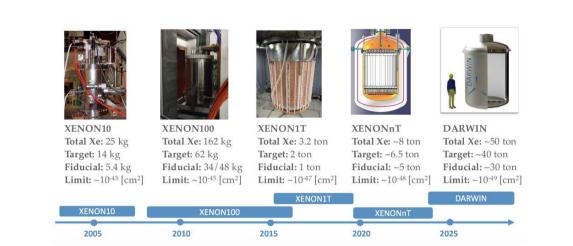
The case of DM detectors: PandaX-4T & XENONnT

Multi-ton DM detectors

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

Measurements: COHERENT

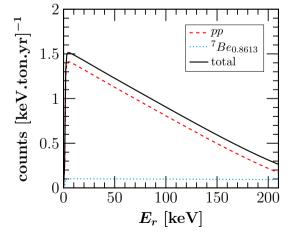

CEvNS physics with the vBDX-DRIFT detector

The case of DM detectors: PandaX-4T & XENONnT

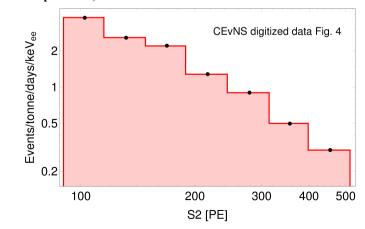
Multi-ton DM detectors

- Impact of reactor neutrinos
- Actual measurements
- What can you learn from these data?
- Survival probability and event rate
- Sensitivities

Final remarks



Lux-Zeplin (LZ) [G2 detector] SURF, South Dakota, USA Total: 10 ton of LXe Fiducial: 5.6 ton of LXe DM sensitivity: 10⁻⁴⁸ cm² **XLZD Consortium**: 40-100 ton


Neutrino-induced NR and ER will be abundant

in thrid generation DM detectors (XLZD)

D.A.S, De Romeri, Flores, Papoulias, 2006.12457

E. Aprile et. al, 1907.11485

Impact of reactor neutrinos

D.A.S. et al, 2402.06416

CEvNS: Cross section, environments and measurements

Measurements: COHERENT

CEvNS physics with the vBDX-DRIFT detector

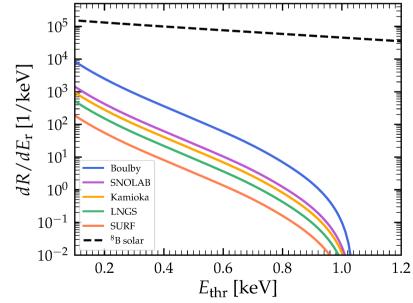
The case of DM detectors: PandaX-4T & XENONnT

Multi-ton DM detectors

Impact of reactor neutrinos

- Actual measurements
- What can you learn from these data?
- Survival probability and event rate
- Sensitivities

Final remarks



Reactor clusters $L \le 1000$ km

Boulby: Power+short baselines

Event rates sizable in all cases

Best location: SURF & LNGS

Actual measurements

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

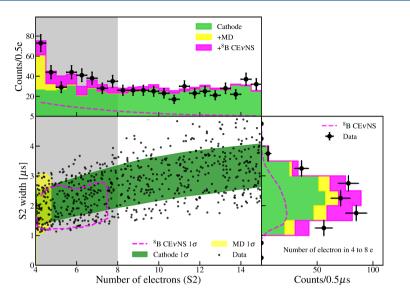
Measurements: COHERENT

CEvNS physics with the vBDX-DRIFT detector

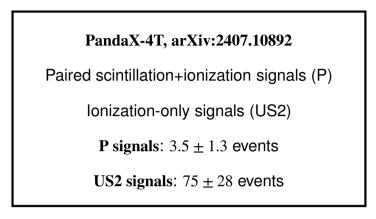
The case of DM detectors: PandaX-4T & XENONnT

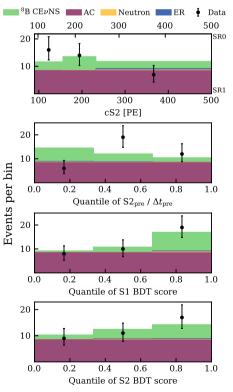
Multi-ton DM detectors

Impact of reactor neutrinos


Actual measurements

• What can you learn from these data?


Survival probability and event rate


Sensitivities

Final remarks

XENONnT, arXiv:2408.02877 Exposure: 3.5 tonne-year NR threshold at 0.5 keV Signal: $11.9^{+4.5}_{-4.2}$ events Background-only signal rejected at 2.73σ

What can you learn from these data?

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

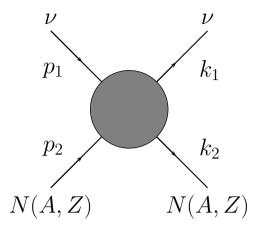
Measurements: COHERENT

CEvNS physics with the vBDX-DRIFT detector

The case of DM detectors: PandaX-4T & XENONnT

Multi-ton DM detectors

Impact of reactor neutrinos

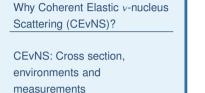

Actual measurements

• What can you learn from these data?

• Survival probability and event rate

Sensitivities

Final remarks



Implications

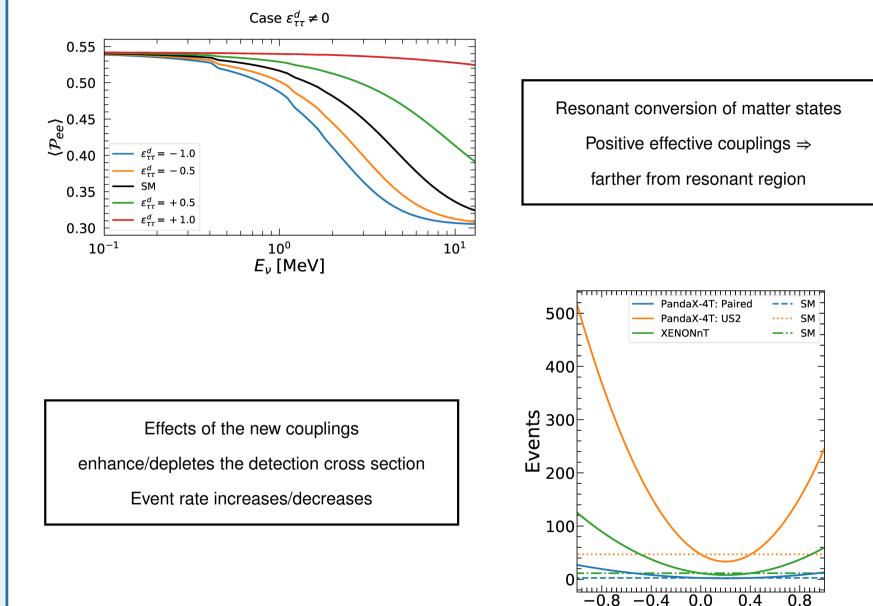
Induce new matter potentials \Rightarrow Affects neutrino propagation in the SUN Affects neutrino flavor conversion

Modifies v - q interactions \Rightarrow Affects the CEvNS cross section Affects the detection process

Survival probability and event rate

Measurements: COHERENT

CEvNS physics with the vBDX-DRIFT detector


The case of DM detectors: PandaX-4T & XENONnT

- Multi-ton DM detectors
- Impact of reactor neutrinos
- Actual measurements
- What can you learn from these data?

Survival probability and event rate

Sensitivities

Final remarks

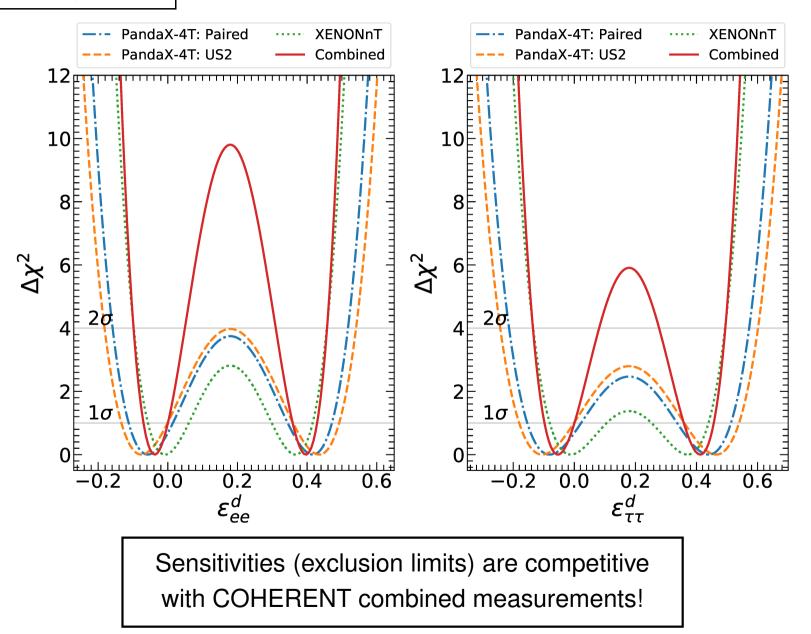
 $arepsilon_{ au au}^d$

Sensitivities

D.A.S. et al, 2409.02003

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements


Measurements: COHERENT

CEvNS physics with the vBDX-DRIFT detector

The case of DM detectors: PandaX-4T & XENONnT

- Multi-ton DM detectors
- Impact of reactor neutrinos
- Actual measurements
- What can you learn from these data?
- Survival probability and event rate

Sensitivities

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and

measurements

Measurements: COHERENT

CEvNS physics with the vBDX-DRIFT detector

The case of DM detectors: PandaX-4T & XENONnT

Final remarks

Takeaways

Takeaways

Why Coherent Elastic *v*-nucleus Scattering (CEvNS)?

CEvNS: Cross section, environments and measurements

Measurements: COHERENT

CEvNS physics with the vBDX-DRIFT detector

The case of DM detectors: PandaX-4T & XENONnT

Final remarks ● Takeaways CEvNS measurements (facilities) offer a rich neutrino program agendas: *v*-cleus, CONUS, CONNIE, COHERENT (SNS), NuMI & LBNF

Directional detectors (vBDX-DRIFT) combined with a high-energy neutrino beam (e.g. LBNF) is suitable for CEvNS measurements in CS₂, CF₄, C₈H₂₀Pb...

Cher aspects of directionality yet to be explored: Identification of DM spin [?]

Multi-ton DM detectors already observing neutrino-induced NRs Still small statistics and sizable uncertainties... Improvements expected

Into the future: Multi-ton DM detectors along with multi-ton detectors (LAr) at the STS Measurements at the European Spallation Source... Delivering $\geq 10^3$ events/year