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University of Guanajuato, México

• México is the most populated Spanish-
speaking country in the world 

• Guanajuato is a medium-size state 
located in central Mexico, 400 km from 
Mexico City, with around 6M people 

• State university with a population 
about 40k students (high-school, 
undergraduates, graduates) 

• Department of Physics (Campus 
León). City of León (1.2M people, 
1,884 m asl) 

• Department of Astronomy (Campus 
Guanajuato). City of Guanajuato 
(0.7M people, 2,000m asl)

You all are welcome to visit us at any time!

68 languages; most spoken: Spanish, Nahuatl and Mayan
Mesoamerica was one of the ancient civilization centres in the world

Main building facade of the University of Guanajuato
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Nostalgia: 25 years ago somewhere in CINVESTAV

Further analysis of a cosmological model with quintessence and scalar dark matter

Tonatiuh Matos* and L. Arturo Ureña-López†
Departamento de Fı́sica, Centro de Investigación y de Estudios Avanzados del IPN, AP 14-740, 07000 México D.F., Mexico
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We present the complete solution to a 95% scalar field cosmological model in which the dark matter is
modeled by a scalar field # with the scalar potential V(#)!V0$cosh(%!&0#)"1' and the dark energy is
modeled by a scalar field ( , endowed with the scalar potential Ṽ(()!Ṽ0$sinh()!&0()'*. This model has
only two free parameters, % and the equation of state +( . With these potentials, the fine-tuning and cosmic
coincidence problems are ameliorated for both dark matter and dark energy and the model agrees with astro-
nomical observations. For the scalar dark matter, we clarify the meaning of a scalar Jeans length and then the
model predicts a suppression of the mass power spectrum for small scales having a wave number k#kmin,# ,
where kmin,#!4.5h Mpc"1 for %!20.28. This last fact could help to explain the death of dwarf galaxies and
the smoothness of galaxy core halos. From this, all parameters of the scalar dark matter potential are com-
pletely determined. The dark matter consists of an ultralight particle, whose mass is m#!1.1$10"23 eV and
all the success of the standard cold dark matter model is recovered. This implies that a scalar field could also
be a good candidate the dark matter of the Universe.

DOI: 10.1103/PhysRevD.63.063506 PACS number!s": 98.80.Cq, 95.35.%d

I. INTRODUCTION

Observations of the luminosity-redshift relation of type Ia
supernovae !SNIa" suggest that distant galaxies are moving
slower than predicted by Hubble’s law, implying an acceler-
ated expansion of the Universe $1'. These observations open
the possibility of the existence of an energy component in
the Universe with a negative equation of state +&0, p
!+, being called dark energy. This component would be
the currently dominant component in the Universe and its
ratio relative to the whole energy would be -./70%. The
simplest model for this dark energy is a cosmological con-
stant (.), in which +!"1. The matter component -M
/30% of the Universe decomposes itself into baryons, neu-
trinos, etc., and cold dark matter which is responsible for the
formation of the structure in the Universe. Observations in-
dicate that stars and dust !baryons" represent something close
to 0.3% of the whole matter of the Universe. The new mea-
surements of the neutrino mass indicate that neutrinos con-
tribute with the same quantity as dust. In other words,
say -M!-b%-0%•••%-DM/0.05%-DM , where -DM
represents the dark matter part of the matter contributions
which has a value of -DM/0.25. The value of the amount of
baryonic matter (/5%) is in agreement with the limits im-
posed by nucleosynthesis !see, for example, Ref. $2'". Then,
this model considers a flat universe (-.%-M11) with
95% of unknown matter but which is of great importance at
the cosmological level. Moreover, it seems to be the most
successful model fitting current cosmological observations
$3'.
However, from the theoretical point of view, . has some

problems. First, the initial conditions have to be set precisely
at one part in 10120, that is, an extreme fine-tuning problem

appears. Second, the cosmic coincidence: why is the current
value of the energy density contribution of the cosmological
constant of the same order than matter? Third, particle theory
predicts a zero cosmological constant, why is it not zero?
These problems can be ameliorated by quintessence, the
model of a fluctuating, inhomogeneous scalar field !Q" roll-
ing down a scalar potential V(Q) $4'. It is assumed that flat
models with -M!0.33'0.05 and a current value of the
equation of state +Q!"0.65'0.07 (+Q can change along
the evolution of the Universe" are the most consistent with
all observations $5'. However, there is not agreement about
which scalar potential V(Q) is the correct one. For instance,
the pure exponential potential has been extensively analyzed
$6–11'. It is known that there is a solution which makes the
scalar energy density scales as the dominant background one,
that could help to ameliorate the fine-tuning problem. Also,
there is another solution that could make the Universe in-
flate, in good accordance with SNIa observations. Moreover,
in a scalar dominated universe, the scalar potential is effec-
tively an exponential one $9'. But nucleosynthesis con-
straints require -Q20.2, and then an exponential potential
would never dominate the Universe $8'.
Another example is a special group of scalar potentials,

named tracker solutions $4'. The cosmology for these poten-
tials is the same and independent of a large range of initial
conditions !about 100 orders of magnitude", avoiding fine-
tuning. The equation of state +Q changes with time towards
"1 $4,5', and then it can dominate the evolution of the Uni-
verse at late times. A typical example is the pure inverse
power-law potential V(Q)/Q") ()#0) $4,6,12'. But the
predicted value for the current equation of state of the quin-
tessence cannot be put in good accordance with supernovae
results $4'. The same problem arises with other inverse
power-law-like potentials. Another possibility is the poten-
tials proposed in Ref. $13'. They can solve the troubles stated
above, but it is difficult to uniquely determine their free pa-
rameters.
On the other hand, we do not know the nature of the dark

*Email address: tmatos@fis.cinvestav.mx
†Email address: lurena@fis.cinvestav.mx

PHYSICAL REVIEW D, VOLUME 63, 063506

0556-2821/2001/63!6"/063506!11"/$15.00 ©2001 The American Physical Society63 063506-1

ar
X

iv
:a

str
o-

ph
/0

00
33

65
v2

  2
6 

M
ar

 2
00

0

Cold and Fuzzy Dark Matter

Wayne Hu, Rennan Barkana & Andrei Gruzinov
Institute for Advanced Study, Princeton, NJ 08540

Revised February 1, 2008

Cold dark matter (CDM) models predict small-scale structure in excess of observations of the cores
and abundance of dwarf galaxies. These problems might be solved, and the virtues of CDM models
retained, even without postulating ad hoc dark matter particle or field interactions, if the dark
matter is composed of ultra-light scalar particles (m ∼ 10−22eV), initially in a (cold) Bose-Einstein
condensate, similar to axion dark matter models. The wave properties of the dark matter stabilize
gravitational collapse providing halo cores and sharply suppressing small-scale linear power.

Introduction.— Recently, the small-scale shortcomings of
the otherwise widely successful cold dark matter (CDM)
models for structure formation have received much at-
tention (see [1–4] and references therein). CDM models
predict cuspy dark matter halo profiles and an abundance
of low mass halos not seen in the rotation curves and lo-
cal population of dwarf galaxies respectively. Though the
significance of the discrepancies is still disputed and so-
lutions involving astrophysical processes in the baryonic
gas may still be possible (e.g. [5]), recent attention has
mostly focused on solutions involving the dark matter
sector.

In the simplest modification, warm dark matter (m ∼
keV) replaces CDM and suppresses small-scale struc-
ture by free-streaming out of potential wells [3], but this
modification may adversely affect structure at somewhat
larger scales. Small-scale power could be suppressed
more cleanly in the initial fluctuations, perhaps originat-
ing from a kink in the inflaton potential [2], but its regen-
eration through non-linear gravitational collapse would
likely still produce halo cusps [6].

More radical suggestions include strong self-
interactions either between dark matter particles [1] or
in the potential of axion-like scalar field dark matter [4].
While interesting, these solutions require self-interactions
wildly in excess of those expected for weakly interacting
massive particles or axions respectively.

In this Letter, we propose a solution involving free par-
ticles only. The catch is that the particles must be ex-
traordinarily light (m ∼ 10−22eV) so that their wave
nature is manifest on astrophysical scales. Under this
proposal, dark matter halos are stable on small scales for
the same reason that the hydrogen atom is stable: the
uncertainty principle in wave mechanics. We call this
dark matter candidate fuzzy cold dark matter (FCDM).

Equations of Motion.— It is well known that if the dark
matter is composed of ultra-light scalar particles m ≪
1eV, the occupation numbers in galactic halos are so high
that the dark matter behaves as a classical field obeying
the wave equation

✷φ = m2φ , (1)

where we have set h̄ = c = 1. On scales much larger than

the Compton wavelength m−1 but much smaller than
the particle horizon, one can employ a Newtonian ap-
proximation to the gravitational interaction embedded in
the covariant derivatives of the field equation and a non-
relativistic approximation to the dispersion relation. It is
then convenient to define the wavefunction ψ ≡ Aeiα, out
of the amplitude and phase of the field φ = A cos(mt−α),
which obeys

i(∂t +
3

2

ȧ

a
)ψ = (−

1

2m
∇2 + mΨ)ψ , (2)

where Ψ is the Newtonian gravitational potential. For
the unperturbed background, the right hand side van-
ishes and the energy density in the field, ρ = m2|ψ|2/2,
redshifts like matter ρ ∝ a−3.

On time scales short compared with the expansion
time, the evolution equations become

i∂tψ = (−
1

2m
∇2 + mΨ)ψ , ∇2Ψ = 4πGδρ . (3)

Assuming the dark matter also dominates the energy
density, we have δρ = m2δ|ψ|2/2. This is simply the non-
linear Schrödinger equation for a self-gravitating particle
in a potential well. In the particle description, ψ is pro-
portional to the wavefunction of each particle in the con-
densate.

Jeans / de Broglie Scale.— The usual Jeans analysis tells
us that when gravity dominates there exists a growing
mode eγt where γ2 = 4πGρ; however a free field oscillates
as e−iEt or γ2 = −(k2/2m)2. In fact, γ2 = 4πGρ −
(k2/2m)2 and therefore there is a Jeans scale

rJ = 2π/kJ = π3/4(Gρ)−1/4m−1/2 ,

= 55m−1/2
22 (ρ/ρb)

−1/4(Ωmh2)−1/4kpc , (4)

below which perturbations are stable and above which
they behave as ordinary CDM. Here m22 = m/10−22eV
and ρb = 2.8 × 1011Ωmh2M⊙ Mpc−3 is the background
density. The Jeans scale is the geometric mean between
the dynamical scale and the Compton scale (c.f. [7–9]) as
originally shown in a more convoluted manner by [10].

The existence of the Jeans scale has a natural interpre-
tation: it is the de Broglie wavelength of the ground state
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A New Cosmological Model of Quintessence and Dark Matter

Varun Sahni1,∗ and Limin Wang 2,†

1Inter-University Centre for Astronomy & Astrophysics, Post Bag 4, Pune 411007, India
2Department of Physics, 538 West 120th Street, Columbia University, New York NY 10027, USA

(February 1, 2008)

We propose a new class of quintessence models in which late times oscillations of a scalar field give
rise to an effective equation of state which can be negative and hence drive the observed acceleration
of the universe. Our ansatz provides a unified picture of quintessence and a new form of dark matter
we call Frustrated Cold Dark Matter (FCDM). FCDM inhibits gravitational clustering on small scales
and could provide a natural resolution to the core density problem for disc galaxy halos. Since the
quintessence field rolls towards a small value, constraints on slow-roll quintessence models are safely
circumvented in our model.

PACS number(s): 04.62.+v, 98.80.Cq

The recent discovery that type Ia high redshift super-
novae are fainter than they would be in an Einstein-de
Sitter universe suggests that the universe may be acceler-
ating, fuelled perhaps by a cosmological constant or some
other field possessing long range ‘repulsive’ effects [1,2].
The acceleration of the universe is related to the equation
of state of matter through the Einstein equation

ä

a
= −

4πG

3

[

ρc + ρX(1 + 3wX)
]

(1)

for cold matter ρc and X-matter with equation of state
PX = wρX . Clearly a necessary (but not sufficient) con-
dition for the universe to accelerate is wX < −1/3. In
other words the equation of state of X-matter must vi-
olate the strong energy condition (SEC) so that ρX +
3PX < 0. Investigations of cosmological models with
Ωm + ΩX ≃ 1 have demonstrated that these models out-
perform most others in predicting the correct form for
the large scale clustering spectrum, accounting for CMB
anisotropies on large and intermediate angular scales
and providing excellent agreement with the luminosity-
distance relation obtained from observations of high red-
shift supernovae [3]. In addition, flat models are com-
pelling from a theoretical viewpoint since they agree with
generic predictions made by the inflationary scenario.

The literature describing phenomenological forms of
matter violating the SEC is vast (see [4] for a recent re-
view). Nevertheless two kinds of matter have been sin-
gled out in recent times as being of special interest:

1. A cosmological constant PX = −ρX (wX = −1),
Λ ≡ ρX/8πG.

2. A scalar field rolling down a potential V (φ).

For fields rolling sufficiently slowly φ̈ ≃ 0 and Tik ≃
V (φ)gik, so that V (φ) plays the role of a time-dependent
Λ-term. Although appealing, models with the simplest
potentials including V ∝ m2φ2 run into problems similar
to those encountered by a cosmological constant. The
enormous overdamping of the scalar field equation dur-
ing radiation and matter dominated epochs causes V (φ)

to remain unchanged virtually from the Planck epoch
zpl ∼ 1019 to z ∼ 2 [5] resulting in an enormous differ-
ence in the scalar field energy density and that of mat-
ter/radiation at early times. This leads to a fine tuning
problem: the relative values of ρφ and ρm must be set
to very high levels of accuracy (ρφ/ρm)initial ∼ 10−123 in
order to ensure ρφ/ρm ∼ 1 at precisely the present epoch.

A more reasonable assumption might be if the energy
density in the φ-field were comparable to that of radiation
at very early times – say at the end of inflation [6]. This
might even be expected if the φ-field were to be an in-
flationary relic, its energy set by an equipartition ansatz.
However for the φ-field to remain subdominant until re-
cently its energy density must decrease rapidly at early
times. Such behaviour clearly cannot arise for polynomial
potentials V (φ) ∝ φp, 0 < p <∼ few, for which ρφ will
rapidly dominate the total density resulting in a colossal
Λ-term today if ρφ ∼ ρrad initially. Fortunately there do
exist families of potentials for which the behaviour of ρφ
is more flexible. To illustrate this, consider a minimally
coupled scalar field rolling down the potential

V (φ) = V0(coshλφ− 1)p. (2)

V (φ) has asymptotic forms:

V (φ) ≃ Ṽ0e
−pλφ for |λφ| ≫ 1 (φ < 0), (3)

V (φ) ≃ Ṽ0(λφ)2p for |λφ| ≪ 1 (4)

where Ṽ0 = V0/2p. Scalar field models with the poten-
tial V (φ) ∝ e−pλφ have the attractive property that the
energy density in φ tracks the the radiation/matter com-
ponent as long as the value of φ is large and negative, so
that [7]:

ρφ
ρB + ρφ

=
3(1 + wB)

p2λ2
(5)

(wB = 0, 1/3 respectively for dust, radiation). During
later times the form of V (φ) changes to a power law (4)
resulting in rapid oscillations of φ about φ = 0. The
change in the form of the scalar field potential is accom-
panied by an important change in the equation of state of

1

astro-ph/9910097

astro-ph/0006024

ar
X

iv
:a

str
o-

ph
/0

10
55

64
v3

  1
6 

O
ct

 2
00

1

Quintessential Haloes around Galaxies

Alexandre Arbeya,b ∗, Julien Lesgourguesa and Pierre Salatia,b

a) Laboratoire de Physique Théorique LAPTH, B.P. 110, F-74941 Annecy-le-Vieux Cedex, France.
b) Université de Savoie, B.P. 1104, F-73011 Chambéry Cedex, France.

11 September 2001

The nature of the dark matter that binds galaxies remains an open question. The favored
candidate has been so far the neutralino. This massive species with evanescent interactions is now
in difficulty. It would actually collapse in dense clumps and would therefore play havoc with the
matter it is supposed to shepherd. We focus here on a massive and non–interacting complex scalar
field as an alternate option to the astronomical missing mass. We investigate the classical solutions
that describe the Bose condensate of such a field in gravitational interaction with matter. This
simplistic model accounts quite well for the dark matter inside low–luminosity spirals whereas the
agreement lessens for the brightest objects where baryons dominate. A scalar mass m ∼ 0.4 to
1.6 × 10−23 eV is derived when both high and low–luminosity spirals are fitted at the same time.
Comparison with astronomical observations is made quantitative through a chi–squared analysis.
We conclude that scalar fields offer a promising direction worth being explored.

I. INTRODUCTION.

The observations of the Cosmic Microwave Background anisotropies [1] point towards a flat universe. The deter-
mination of the relation between the distance of luminosity and the redshift of supernovae SNeIa [2] strongly favors
the existence of a cosmological constant which contributes a fraction ΩΛ ∼ 0.7 to the closure density. The pressure–
to–density ratio w of that fluid is negative with a value of w = −1 in the case of an exact cosmological constant.
Alternatively, this component could be in the form of dark energy – the so–called quintessence – whose simplest
incarnation is a neutral scalar field Φ with the Lagrangian density

L =
1

2
g µν ∂µΦ ∂νΦ − V (Φ) . (1)

Should the metric be flat and the field homogeneous, the energy density may be expressed as

ρ ≡ T 0
0 =

Φ̇2

2
+ V (Φ) , (2)

whereas the pressure obtains from Tij ≡ −g ij P so that

P =
Φ̇2

2
− V (Φ) . (3)

If the kinetic term is negligible with respect to the contribution of the potential, a pure cosmological constant –
ω = −1 – is recovered. Cosmological scenarios with quintessence in the form of a scalar field have been investigated
[3] with various potentials and their relevance to structure formation has been discussed.

On the other hand, matter contributes a fraction ΩM ∼ 0.3 to the energy balance of the universe. The nature of
that component is still unresolved insofar as baryons amount only to [4]

ΩB h2 = 0.02± 0.002 . (4)

According to the common wisdom, non–baryonic dark matter would be made of neutralinos – a massive species with
weak interactions that naturally arises in the framework of supersymmetric theories. This approach has given rise to

∗E–mail: arbey@lapp.in2p3.fr, lesgourg@lapp.in2p3.fr, salati@lapp.in2p3.fr
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1
−g

∂μ( −ggμν∂νϕ) =
∂V
∂ϕ

Klein-Gordon equation

Non-relativistic!

V(ϕ) =
1
2

m2
aϕ2

(Fuzzy Dark Matter)
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Klein-Gordon equation
• Famous equation formulated by Erwin 

Schrodinger (1925) 

• Famous equation proposed by Oscar 
Klein & Walter Gordon (1926) 

• Equation of motion to describe massive 
wave packets in quantum physics, with 
mass  

• It does not work with the hydrogen atom 

• Typical length scale: Compton length 
  

• Typical time scale:  

ma

LC = h/(mac) [LC = 1/ma]
TC = h/(mac2)

[TC = 1/ma]
5

Klein Gordon Schrödinger

1
−g

∂μ( −ggμνϕ) − ∂ϕV(ϕ) = 0

V(ϕ) = m2
a f2

aF(ϕ/fa)

=
1
2!

m2
aϕ2 +

λ3

3!
m2

a

fa
ϕ3 +

λ4

4!
m2

a

f 2
a

ϕ4 + ⋯
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Theoretical expectations for 
ultra-light axions
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INFLATION-DARK MATTER-DARK ENERGY
• All in one with many single fields: the axiverse

like hidden sectors with low confinement scales. This both opens up interesting phenomenology
associated to the presence of this “dark world” and raises the question of how it managed to escape
being observed so far. We will touch on some of the issues involved in the concluding Section 3.
For now we focus upon the observational signatures of the light axions that we have argued are
generic to string theory once the strong CP problem is solved.

2 Cohomologies from Cosmology

CMB 
Polarization

10-33 4 ! 10-28

Axion Mass in eV

108

Inflated 
Away

Decays

3 ! 10-10

QCD axion
2 ! 10-20

3 ! 10-18

Anthropically Constrained
Matter

Power Spectrum
Black Hole Super-radiance

Figure 1: Map of the Axiverse: The signatures of axions as a function of their mass, assuming
fa ⇡ MGUT and Hinf ⇠ 108 eV. We also show the regions for which the axion initial angles are
anthropically constrained not to over-close the Universe, and axions diluted away by inflation.
For the same value of fa we give the QCD axion mass. The beginning of the anthropic mass
region (2 ⇥ 10�20 eV) as well as that of the region probed by density perturbations (4 ⇥ 10�28

eV) are blurred as they depend on the details of the axion cosmological evolution (see Section
2.3). 3 ⇥ 10�18 eV is the ultimate reach of density perturbation measurements with 21 cm line
observations. The lower reach from black hole super-radiance is also blurred as it depends on
the details of the axion instability evolution (see Section 2.5). The region marked as “Decays”,
outlines very roughly the mass range within which we expect bounds or signatures from axions
decaying to photons, if they couple to ~E · ~B. We will discuss axion decays in detail in a companion
paper.

2.1 Discovering the String Axiverse

We now turn to the observational consequences of axions lighter than or around the QCD axion
mass. For simplicity, we keep fa fixed at MGUT and Hinfl ⇠ 0.1 GeV. The initial displacement of
axions heavier than ⇠ 10�20 eV has to be tuned in order for them not to overclose the universe and
axions heavier than 0.1 GeV have been diluted away by inflation. The observational consequences
of the string axiverse are outlined in Figure 1.

We concentrate on three main windows to the axiverse. First, as discussed in Section 2.2
axions of masses between 10�33 eV and 4⇥ 10�28 eV, if they couple to ~E · ~B, cause a rotation in

8

Arvanitaki et al, Phys. Rev. D 83, 044026 (2011) 

String compactifications give rise to many ‘axion’ fields
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anthropically constrained not to over-close the Universe, and axions diluted away by inflation.
For the same value of fa we give the QCD axion mass. The beginning of the anthropic mass
region (2 ⇥ 10�20 eV) as well as that of the region probed by density perturbations (4 ⇥ 10�28

eV) are blurred as they depend on the details of the axion cosmological evolution (see Section
2.3). 3 ⇥ 10�18 eV is the ultimate reach of density perturbation measurements with 21 cm line
observations. The lower reach from black hole super-radiance is also blurred as it depends on
the details of the axion instability evolution (see Section 2.5). The region marked as “Decays”,
outlines very roughly the mass range within which we expect bounds or signatures from axions
decaying to photons, if they couple to ~E · ~B. We will discuss axion decays in detail in a companion
paper.

2.1 Discovering the String Axiverse

We now turn to the observational consequences of axions lighter than or around the QCD axion
mass. For simplicity, we keep fa fixed at MGUT and Hinfl ⇠ 0.1 GeV. The initial displacement of
axions heavier than ⇠ 10�20 eV has to be tuned in order for them not to overclose the universe and
axions heavier than 0.1 GeV have been diluted away by inflation. The observational consequences
of the string axiverse are outlined in Figure 1.

We concentrate on three main windows to the axiverse. First, as discussed in Section 2.2
axions of masses between 10�33 eV and 4⇥ 10�28 eV, if they couple to ~E · ~B, cause a rotation in
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Ultra-light axions (ULAs) with masses in the range 10�33 eV  ma  10�20 eV are motivated
by string theory and might contribute to either the dark-matter or dark-energy densities of the
Universe. ULAs could suppress the growth of structure on small scales, or lead to an altered
integrated Sachs-Wolfe e↵ect on large-scale cosmic microwave-background (CMB) anisotropies. In
this work, cosmological observables over the full ULA mass range are computed, and then used
to search for evidence of ULAs using CMB data from the Wilkinson Microwave Anisotropy Probe
(WMAP), Planck satellite, Atacama Cosmology Telescope, and South Pole Telescope, as well as
galaxy clustering data from the WiggleZ galaxy-redshift survey. In the mass range 10�32 eV 
ma  10�25.5 eV, the axion relic-density ⌦a (relative to the total dark-matter relic density ⌦d)
must obey the constraints ⌦a/⌦d  0.05 and ⌦ah

2  0.006 at 95%-confidence. For ma ⇠> 10�24 eV,
ULAs are indistinguishable from standard cold dark matter on the length scales probed, and are
thus allowed by these data. For ma ⇠< 10�32 eV, ULAs are allowed to compose a significant fraction
of the dark energy.

PACS numbers: 14.80.Mz,90.70.Vc,95.35.+d,98.80.-k,98.80.Cq

I. INTRODUCTION

A multitude of data supports the existence of dark
matter (DM) [1–12]. The identity of the DM, however,
remains elusive. Axions [13–15] are a leading candidate
for this DM component of the Universe [16–22]. Origi-
nally proposed to solve the strong CP problem [13], they
are also generic in string theory [23, 24], leading to the
idea of an axiverse [25]. In the axiverse there are multiple
axions with masses spanning many orders of magnitude
and composing distinct DM components. For all axion
masses ma ⇠> 3H0 ⇠ 10�33eV, the condition ma > 3H
is first satisfied prior to the present day. When this hap-
pens, the axion begins to coherently oscillate with an
amplitude set by its initial misalignment, leading to ax-
ion homogeneous energy densities that redshift as a

�3

(where a is the cosmic scale factor). If ma ⇠> 10�27 eV,
the axion energy-density dilutes just as non-relativistic
particles do after matter-radiation equality, making the
axion a plausible DM-candidate.

The fact that axions can be so light places them, like
neutrinos, in a unique and powerful position in cosmol-
ogy. For as we shall show, unlike all other candidates
for DM, axions lead to observational e↵ects that are di-
rectly tied to their fundamental properties, namely the
mass and field displacement. Signatures in the cosmic
microwave background (CMB) and large-scale structure
(LSS) can be used to pin down axion abundances to high

⇤
dmarsh@perimeterinstitute.ca

FIG. 1. Marginalized 2 and 3� contours show limits to the
ultra-light axion (ULA) mass fraction ⌦a/⌦d as a function
of ULA mass ma. The vertical lines denote our 3 sampling
regions, discussed below. The mass fraction in the middle
region is constrained to be ⌦a/⌦d ⇠< 0.05 at 95% confidence.
Red regions show CMB-only constraints, while grey regions
include large-scale structure data.

precision as a function of the mass; these constraints can
be used to place stringent limits on the mass of the ax-
ion as a candidate for DM. Furthermore, the nature of
inhomogeneities in the axion distribution yield, as with
primordial gravitational waves, a direct window on the
very early universe and, in particular, the energy scale of
inflation. This state of a↵airs echoes the remarkable re-
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like hidden sectors with low confinement scales. This both opens up interesting phenomenology
associated to the presence of this “dark world” and raises the question of how it managed to escape
being observed so far. We will touch on some of the issues involved in the concluding Section 3.
For now we focus upon the observational signatures of the light axions that we have argued are
generic to string theory once the strong CP problem is solved.
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Figure 1: Map of the Axiverse: The signatures of axions as a function of their mass, assuming
fa ⇡ MGUT and Hinf ⇠ 108 eV. We also show the regions for which the axion initial angles are
anthropically constrained not to over-close the Universe, and axions diluted away by inflation.
For the same value of fa we give the QCD axion mass. The beginning of the anthropic mass
region (2 ⇥ 10�20 eV) as well as that of the region probed by density perturbations (4 ⇥ 10�28

eV) are blurred as they depend on the details of the axion cosmological evolution (see Section
2.3). 3 ⇥ 10�18 eV is the ultimate reach of density perturbation measurements with 21 cm line
observations. The lower reach from black hole super-radiance is also blurred as it depends on
the details of the axion instability evolution (see Section 2.5). The region marked as “Decays”,
outlines very roughly the mass range within which we expect bounds or signatures from axions
decaying to photons, if they couple to ~E · ~B. We will discuss axion decays in detail in a companion
paper.

2.1 Discovering the String Axiverse

We now turn to the observational consequences of axions lighter than or around the QCD axion
mass. For simplicity, we keep fa fixed at MGUT and Hinfl ⇠ 0.1 GeV. The initial displacement of
axions heavier than ⇠ 10�20 eV has to be tuned in order for them not to overclose the universe and
axions heavier than 0.1 GeV have been diluted away by inflation. The observational consequences
of the string axiverse are outlined in Figure 1.

We concentrate on three main windows to the axiverse. First, as discussed in Section 2.2
axions of masses between 10�33 eV and 4⇥ 10�28 eV, if they couple to ~E · ~B, cause a rotation in
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• All action with many single fields: the axiverseFigure 1: Axionic Black Hole Atom: The spinning black hole “feeds” superradiant states form-

ing an axion Bose-Einstein condensate. The resulting bosonic atom will emit gravitons through
axion transitions between levels and annihilations and will emit axions as a consequence of self-
interactions in the axion field.

Consequently, one may expect hundreds of axion-like particles in a given string compactification.
However, a plenitude of cycles does not yet guarantee the presence of a plenitude of axions. There
is a number of e↵ects in string theory that could produce a large axion mass, such as branes
wrapping the cycles, and fluxes. One can roughly estimate the number of light axions as being
determined by the number of cycles without fluxes—presumably, around one tenth of the total
number of cycles. Still this leaves us with the expectation of several tens of axion-like particles.

The discovery of a plenitude of particles in our vacuum with similar properties but di↵erent
masses supports the idea of a plenitude of vacua, as both the axiverse and the multiverse are
dynamical consequences of the same fundamental ingredients.

The masses of string axions are exponentially sensitive to the sizes of the corresponding cycles,
so one expects them to be homogeneously distributed on the logarithmic scale. However, given
that the QCD ✓-parameter is constrained to be less than 10�10, non-perturbative string corrections
to the QCD axion potential should be at least ten orders of magnitude suppressed as compared
to the QCD generated potential. It is then natural to expect many of the axions to be much
lighter than the QCD axion; these are the axions whose mass is dominated only by these small
non-perturbative string e↵ects.

The implicit, and very plausible assumption behind this line of reasoning is that there is no
anthropic reason for the existence and properties of the QCD axion. Consequently, these properties
should follow from the dynamics of the compactification manifold, rather than being a result of
fine-tuning, and the QCD axion should be a typical representative among other axion-like fields.
A priori we expect tens (or even hundreds) of light axions, it would be really surprising if the
QCD axion turned out to be the single one.

5

-Absence of rotating black holes whenever 
their Schwarzschild radius  

matches the Compton wavelength 

-Direct gravitational waves coming from 
the axion cloud 

-“Bosenova”

Barranco et al, PRD 89 (2014) 083006; PRD 96 (2017) 024049

http://www.nist.gov/public_affairs/releases/
bosenova.cfm
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Table 2.1 Couplings of ultralight bosonic fields to Standard Model particles and fields.
Examples of ultralight bosons include scalars φ, axions (or axionlike particles, ALPs) a, and
dark/hidden photons, described by a vector potential Xµ and field strength FµΣ . Standard Model
particles include Higgs bosons h, gluons GµΣ , photons FµΣ , and fermions η . The dual gluon
field tensor is denoted G̃µΣ and the dual electromagnetic tensor is denoted F̃ µΣ , and Aµ is the
photon vector potential. General terms from the Standard Model are denoted by Osm. Note that
because the Lagrangian is real-valued, the operators must take the appropriate form depending
on whether the considered fields are real or complex. The usual Dirac matrices are denoted γµ
and γ5 = !iγ0γ1γ2γ3, and σµΣ = (i/2)[γ µ, γ Σ ]. The rightmost column list the chapters of
the present book in which experiments probing such effects are discussed. Table adapted from
Refs. [20] and [24]

Spin Type Operator Interaction Chapters

0 Scalar φh†h Higgs portal 8, 10
0 Scalar φnOsm (n = 1, 2) Dilaton 8, 10
0 Scalar φ†∂µφη

†γ µη Current-current 8, 10
0 Pseudoscalar aGµΣG̃µΣ Axion-gluon 6
0 Pseudoscalar aFµΣ F̃µΣ Axion-photon 4, 5, 7, 9
0 Pseudoscalar

(
∂µa

⎧
η†γ µγ5η Axion-fermion 6, 8, 10

1 Vector Xµη
†γ µη Minimally coupled 8

1 Vector FµΣFµΣ , AµXµ Photon-hidden-photon mixing 7
1 Vector FµΣη

†σµΣη Dipole interaction 6, 8, 10
1 Axial vector Xµη

†γ µγ 5η Minimally coupled 6, 8, 10

few different phenomenological “portals” between the Standard Model and the dark
sector [24], where the portals can be classified by the physical effects the UBDM
generates in experiments. In this section, for illustrative purposes, we analyze a few
of these different interactions and portals.

Before analyzing particular cases, though, let us consider some general features
of the interactions listed in Table 2.1. The first column of Table 2.1 lists the
spin of the boson. Here we consider spin-0 (as discussed in Sects. 2.2 and 2.3)
and spin-1 bosons, encompassing the majority of presently studied beyond-the-
Standard-Model theories.7 The second column considers the parity symmetry (P )
of the interaction. Parity is the symmetry with respect to spatial inversion (reflection
of coordinate axes through the origin): under spatial inversion, P -odd quantities
change sign (pseudoscalars and axial vectors) and P -even quantities are invariant
(scalars and vectors). Parity symmetry is among the key discrete symmetries
characterizing interactions, others include time-reversal (T ) and charge-conjugation

instantons [21, 22]. For further discussion of the chiral anomaly and instantons, see, e.g., Ref. [2].
For the dilaton, the interactions are defined in the Einstein conformal frame [23].
7 The limitation to bosons with spin⇐ 1 is due in part to the fact that at present there are unresolved
theoretical questions concerning the validity, naturalness, and allowed interactions for spin-2 fields
with nonzero mass [20]. Presently there is no known effective field theory for bosons with spin≥ 3
that is valid above the boson mass [20].

The Search for Ultralight Bosonic Dark Matter, Jackson and van 
Bibber eds., Springer (Open Access) 2021.
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ABSTRACT

A bosonic dark matter model is examined in detail via high-resolution simulations. These bosons have particle
mass of the order of 10−22 eV and are noninteracting. If they do exist and can account for structure formation,
these bosons must be condensed into the Bose–Einstein state and described by a coherent wave function. This
matter, also known as fuzzy dark matter, is speculated to be able, first, to eliminate the subgalactic halos to solve
the problem of overabundance of dwarf galaxies, and, second, to produce flat halo cores in galaxies suggested
by some observations. We investigate this model with simulations up to 10243 resolution in a 1 h−1 Mpc box
that maintains the background matter density Ωm = 0.3 and ΩΛ = 0.7. Our results show that the extremely
light bosonic dark matter can indeed eliminate low-mass halos through the suppression of short-wavelength
fluctuations, as predicted by the linear perturbation theory. But in contrast to expectation, our simulations yield
singular cores in the collapsed halos, where the halo density profile is similar, but not identical, to the Navarro–
Frenk–White profile. Such a profile arises regardless of whether the halo forms through accretion or merger.
In addition, the virialized halos exhibit anisotropic turbulence inside a well-defined virial boundary. Much like
the velocity dispersion of standard dark matter particles, turbulence is dominated by the random radial flow
in most part of the halos and becomes isotropic toward the halo cores. Consequently, the three-dimensional
collapsed halo mass distribution can deviate from spherical symmetry, as the cold dark matter halo does.

Key words: dark matter – Galaxy: structure – large-scale structure of universe

Online-only material: color figures

1. INTRODUCTION

Observations of low surface brightness galaxies and dwarf
galaxies indicate that the cores of galactic halos have shallow
density profiles (Dalcanton et al. 1997; Swaters et al. 2000)
instead of central cusps predicted by cold dark matter (CDM;
Navarro et al. 1997). In addition, the number density of
dwarf galaxies in Local Group turns out to be an order of
magnitude fewer than that produced by CDM simulations
(Klypin et al. 1999). These two features cast doubt on the validity
of standard CDM. There have been at least three different
solutions proposed to resolve these problems: (1) warm dark
matter, (2) collisional dark matter, and (3) fuzzy dark matter.

Warm dark matter can suppress small-scale structures by free
streaming. It seems to be able to both solve the overabundance
problem of dwarf galaxies and the singular core problem. In
this model, the flat core is embedded within a radius a couple of
percents of the virial radius (Jing 2001; Colins et al. 2008), and
the core smoothly connects to the Navarro–Frenk–White (NFW)
profile (Navarro et al. 1997) outside. However, this modification
may generally adversely affect structures of somewhat larger
scales (Hu et al. 2000), despite that fine tuning of the thermal
velocity of dark matter particles may still be able to have the
larger scale structures consistent with observations (Abazajian
2006; Viel et al. 2008).

For collisional dark matter, the halo core can be flattened and
dwarf galaxies destroyed, and N-body simulations confirm this
conjecture (Spergel & Steinhardt 2000). But simulations also
show that very frequent collisions can yield even more singular
cores than the standard collisionless CDM does (Yoshida et al.
2000). This opposite behavior is indicative of the requirement
of fine tuning for collisional parameters.

The third solution to the problem is to treat dark matter
as an extremely light bosonic dark matter (ELBDM) or fuzzy
dark matter (Press & Ryden 1990; Sin 1994; Hu et al. 2000).
Axion has been thought to be a candidate of light bosonic
dark matter. But for the light dark matter to erase the singular
galactic core and suppresses low-mass halos, the particle mass
must be far smaller than axion (m ∼ 10−22 eV), so low that
the uncertainty principle operates on the astronomical length
scale. Much like axions, the ELBDM is in a Bose–Einstein
condense state produced in the early universe. These extremely
light particles share the common ground state and is described
by a single coherent wave function. Its de-Broglie wavelength
is comparable to or even somewhat smaller than the Jean’s
length (Davies & Widrow 1997), where the quantum fluctuation
provides effective pressure against self-gravity.

Several previous works have pondered on such an idea or
its variance (Sin 1994; Hu et al. 2000; Siddhartha & Uréna-
López 2003), in which the wave mechanics is described by the
Schrödinger–Poisson equation with Newtonian gravity or by the
Klein–Gordon equation with gravity. The Schrödinger–Poisson
system addresses the scale-free regime of quantum mechanics,
where the Jean’s length is a dynamical running parameter. On the
other hand, the Klein–Gordon system makes use of the Comp-
ton wavelength as a natural length scale to create the flat core in
a halo. Widrow and Kaiser conducted simulations for the two-
dimensional Schrödinger–Poisson system to approximate the
standard collisionless cold dark matter (Widrow & Kaiser 1993).
In the two-dimensional case, the 1/r gravitational potential is
replaced by log(r), and the two-dimensional force law in their
simulation becomes of longer range than it actually is in three
dimensions. Due to the lack of three-dimensional numerical sim-
ulations, some authors resort to spherical symmetry (Sin 1994;
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Siddhartha & Uréna-López 2003) or even one-dimensional (Hu
et al. 2000) to study this problem. These simplifications may
not capture what actually results in a three-dimensional system
with realistic initial conditions. In particular, the existence of a
flattened core has been derived or inferred from these previous
works of one-dimensional system or with spherical symmetry.
In this paper, we report high-resolution fully three-dimensional
simulations for this problem. Surprisingly, our simulations re-
veal that the singular cores of bound objects remain to exist even
when the core size is much smaller than the Jean’s length.

In Section 2, we provide an explanation for the possible
existence of the Bose–Einstein state for the extremely low
mass bosons under investigation here. We then discuss two
different representations of ELBDM and the evolution of linear
perturbations for the two representations. In Section 3, the
numerical scheme and initial condition are described. We
present the simulation results in Section 4. In Section 5, we
look into the physics of collapsed cores with detailed analyses
from different perspectives. Finally, the conclusion is given in
Section 6. In the Appendix, we present results of one- and two-
dimensional simulations and demonstrate that singular cores do
not occur in one- and two-dimensional cases.

2. THEORY

2.1. Bose–Einstein Condensate

A Bose–Einstein condensate (BEC) is a state of bosons cooled
to a temperature below the critical temperature. BEC happens
after a phase transition where a large fraction of particles
condense into the ground state, at which point quantum effects,
such as interference, become apparent on a macroscopic scale.
The critical temperature for a gas consisting of noninteracting
relativistic particles is given by (Burakovsky & Horwitz 1996)

Tc ∼
(nch

3m

)1/2
, (1)

where the Boltzmann’s constant and speed of light have been
set to unity. Given the extremely low particle mass assumed
here, Tc is derived from the relativistic Bose–Einstein particle–
antiparticle distribution with the chemical potential set to
particle mass m. Here, the “charge” density nch ≡ n+ − n−,
where n+ and n− are the number densities of particles and
antiparticles in excited states. On the other hand, we have
nch ∼ (m/T )n+, and it follows that Tc ∼

(
n+
3T

)1/2. Note that
n+ scales as a−3 and T as a−1, and it follows Tc scales as
a−1. It means that when T is below Tc at some time after a
phase transition, the temperature will remain subcritical in any
later epoch. As an estimate, if we assume 1% of ELBDM to
be in the excited states after its decoupling, the current critical
temperature becomes

Tc = 3 × 10−14
( m

eV

)−1/2
(

T

eV

)−1/2

eV. (2)

Substituting m ∼ 10−22 eV and T ∼ 10−4 eV, the same as
the present photon temperature, we find that the current critical
temperature Tc = 0.3 eV ≫ T . Hence ELBDM, if exists and
accounts for the dark matter, may very well be in the BEC
state ever since a phase transition in the early universe. Despite
ELBDM particles in the excited state are with a relativistic
temperature, almost all particles are in the ground state and
described by a single nonrelativistic wave function.

2.2. Basic Analysis

The Lagrangian of nonrelativistic scalar field in the comoving
frame is

L = a3

2

[
ih̄

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
+

h̄2

a2m
(∇ψ)2 − 2mV ψ2

]
,

(3)
and the equation of motion for this Lagrangian gives a modified
form of Schrödinger’s equation (Siddhartha & Uréna-López
2003):

ih̄
∂ψ

∂t
= − h̄2

2a2m
∇2ψ + mV ψ, (4)

where ψ ≡ φ(n0/a
3)−1/2 with φ being the ordinary wave

function, n0 the present background number density, and V is
the self-gravitational potential obeying the Poisson equation,

∇2V = 4πGa2δρ = 4πG

a
ρ0(|ψ |2 − 1). (5)

The only modification to the conventional Schrödinger–Poisson
equation is the appearance a−1 associated with the comoving
spatial gradient ∇, and the probability density |ψ |2 to be
normalized to the background proper density ρ/m. In the above,

ρ0 ≡ 3H 2
0

8πG
Ωm = mn0 (6)

is the background mass density of the universe.
To explore the nature of the ELBDM, we first adopt the

hydrodynamical description to investigate its linear evolution.
This approach is not only more intuitive than the wave function
description, its advantage will also become apparent later. Let
the wave function be

ψ =
√

n

n0
ei S

h̄ , (7)

where n = n̄a3, the comoving number density and n̄ is
the proper number density. The quadrature of Schrödinger’s
equation can be split into real and imaginary parts, which
become the equations of acceleration and density separately,

∂

∂t
v +

1
a2

v · ∇v +
∇V

m
− h̄2

2m2a2
∇

(∇2√n√
n

)
= 0 (8)

∂n

∂t
+

1
a2

∇ · (nv) = 0, (9)

where v ≡ ∇S/m is the fluid velocity. There is a new term
depending on the third-order spatial derivative of the wave
amplitude

√
n in the otherwise cold-fluid force equation. This

term results from the “quantum stress” that acts against gravity,
and it can be cast into a stress tensor in the energy and
momentum conservation equation (Chiueh 1998, 2000). The
quantum stress becomes effective only when the spatial gradient
of the structure is sufficiently large.

The fluid equations, Equations (5), (8), and (9), are linearized
and combined to yield

∂

∂t
a2 ∂

∂t
δn − 3H0

2Ωm

2a
δn +

h̄2

4m2a2
∇2∇2δn = 0. (10)

Upon spatially Fourier transforming δn, it follows

d

dt
a2 dnk

dt
−

(
3H0

2Ωm

2a

)
nk +

h̄2k4

4m2a2
nk = 0, (11)

Newtonian version

Evolution of the Schrödinger-Newton system for a self-gravitating scalar field
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Using numerical techniques, we study the collapse of a scalar field configuration in the Newtonian limit of
the spherically symmetric Einstein-Klein-Gordon system, which results in the so called Schrödinger-Newton
!SN" set of equations. We present the numerical code developed to evolve the SN system and related topics,
like equilibrium configurations and boundary conditions. Also, we analyze the evolution of different initial
configurations and the physical quantities associated with them. In particular, we readdress the issue of the
gravitational cooling mechanism for Newtonian systems and find that all systems settle down onto a zero-node
equilibrium configuration.
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I. INTRODUCTION

In a previous paper of ours #1$, we studied the formation
of a gravitationally bounded object comprised of scalar par-
ticles, under the influence of Newtonian gravity. The dynam-
ics of the system is described by the coupled Schrödinger-
Newton !SN" system of equations, which is nothing but the
weak field limit of its general relativistic counterpart, the
Einstein-Klein-Gordon !EKG" system.
As at the moment we have no hints toward finding an

analytic solution for the evolution, we found it necessary to
develop numerical techniques to study the formation process
of the scalar objects. The study of the dynamical properties
of the fully time-dependent SN system has been done before
in the literature #2–5$, but more is needed in order to under-
stand the gravitational collapse of a weakly gravitating scalar
field.
The main aim of this paper is to perform an exhaustive

numerical study of the collapse and evolution of a spheri-
cally symmetric scalar object in the Newtonian regime. Here,
we develop a numerical strategy to evolve the SN system
and study important issues like the stability and the forma-
tion process of gravitationally bound scalar systems, a topic
that has recently become attractive in cosmology #1,2,5–9$.
A summary of the paper is as follows. In Sec. II, we

present the relativistic EKG and Newtonian SN equations
that describe the evolution of a self-gravitating scalar field in
the spherically symmetric case. Correspondingly, it is de-
scribed how the EKG and the SN equations are solved in
order to obtain regular and asymptotically flat solutions.
These solutions are known as boson stars and oscillatons,
respectively, for complex and real scalar fields. However, we
focus our attention on their corresponding weak field limit,
SN system, and its properties.
In Sec. III, we present an appropriate numerical code to

evolve the SN system, providing details about the algorithms
used. The issues concerning the physical boundary condi-

tions imposed on the SN system and the accuracy of the code
are of particular importance.
The results of the numerical evolutions are given in Sec.

IV. We systematically test the boundary conditions, the con-
vergence of the numerical solutions, and how the latter re-
produce the expected results for the equilibrium configura-
tions of the SN system.
Section V is devoted to the study of the gravitational cool-

ing mechanism, first described in #4$. Finally, the conclu-
sions are collected in Sec. VI.

II. MATHEMATICAL BACKGROUND

Here we describe the mathematical basis needed to deal
with classical scalar fields, complex and real, in both the
relativistic and Newtonian limits. The latter is given in much
more detail as it will be our system of interest for the rest of
this paper.
To begin with, we write the equations that describe a sca-

lar system within general relativity, which are the coupled
Einstein-Klein-Gordon equations. For simplicity, we deal
only with the spherically symmetric case for a single scalar
fluctuation. Then, we describe how the EKG equations can
be solved to obtain regular and asymptotically flat solutions,
which are known in the literature as boson stars and oscilla-
tons. Some comments on the stability of these relativistic
solutions are also given.
After that, we obtain the Newtonian limit of the EKG

system through a post-Newtonian procedure, which yields
the so called Schrödinger-Newton equations. The Newtonian
limit is quite interesting by itself because many physical
quantities can be defined and measured, quantities that are
useful to describe the system in a detailed manner. Moreover,
the SN system obeys a scale transformation such that the
study of all the possible equilibrium configurations is re-
duced to the study of properly sized profiles, and this in-
cludes the evolution process too.
The SN system can be solved to find stationary solutions

that we shall call Newtonian equilibrium configurations.
These are called Newtonian boson stars and Newtonian os-
cillatons, following the relativistic nomenclature. Although
Newtonian oscillatons are described by a larger set of equa-*Current address.
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Structure formation

Figure 1: Comparison of cosmological large-scale structures formed by standard CDM and by wave-
like dark matter, ψDM. Panel (a) shows the structure created by evolving a single coherent wave function
for ΛψDM calculated on AMR grids. Panel (b) is the structure simulated with a standard ΛCDM N-body
code GADGET-212 for the same cosmological parameters, with the high-k modes of the linear power spec-
trum intentionally suppressed in a way similar to the ψDMmodel to highlight the comparison of large-scale
features. This comparison clearly demonstrates that the large scale distribution of filaments and voids is in-
distinguishable between these two completely different calculations, as desired given the success of ΛCDM
in describing the observed large scale structure. ψDM arises from the low momentum state of the conden-
sate so that it is equivalent to collisionless CDM well above the Jeans scale.

CDM, including the surprising uniformity of their
central masses,M(< 300 pc)≃ 107 M⊙, and shallow
density profiles1–4. In contrast, galaxies predicted by
CDM extend to much lower masses, well below the
observed dwarf galaxies, with steeper, singular mass
profiles5–7. Adjustments to standard CDM address-
ing these difficulties consider particle collisions16, or
warm dark matter (WDM)17. WDM can be tuned to
suppress small scale structures, but does not provide
large enough flat cores18, 19. Collisional CDM can
be adjusted to generate flat cores, but cannot sup-
press low mass galaxies without resorting to other
baryonic physics20. Better agreement is expected
for ψDM because the uncertainty principle coun-
ters gravity below a Jeans scale, simultaneously sup-
pressing small scale structures and limiting the cen-
tral density of collapsed haloes8, 9.

Detailed examination of structure formation
with ψDM is therefore highly desirable, but, un-
like the extensive N-body investigation of standard

CDM, no sufficiently high resolution simulations of
ψDM have been attempted. The wave mechanics
of ψDM can be described by Schrödinger’s equa-
tion, coupled to gravity via Poisson’s equation13
with negligible microscopic self-interaction. The dy-
namics here differs from collisionless particle CDM
by a new form of stress tensor from quantum un-
certainty, giving rise to a comoving Jeans length,
λJ ∝ (1+ z)1/4m−1/2

B , during the matter-dominated
epoch15. The insensitivity of λJ to redshift, z, gener-
ates a sharp cutoff mass below which structures are
suppressed. Cosmological simulations in this con-
text turn out to be much more challenging than stan-
dard N-body simulations as the highest frequency
oscillations, ω , given approximately by the matter
wave dispersion relation, ω ∝ m−1

B λ−2, occur on the
smallest scales, requiring very fine temporal resolu-
tion even for moderate spatial resolution (see Sup-
plementary Fig. S1). In this work, we optimise
an adaptive-mesh-refinement (AMR) scheme, with

2

4

FIG. 3: Snapshots of a soliton collision simulation. Panels
(a)-(c) show the projected density distribution at the initial
and intermediate stages, and panel (d) shows a close-up of
the conspicuous solitonic core at the final stage. Fluctuating
density granules resulting from the quantum wave interfer-
ence appear everywhere and have a size similar to the central
soliton.

halo configuration still persists in a different setting from
cosmological structure formation, and if so, we want to
ascertain what factors determine the soliton scale among
the infinite number of self-similar solutions. Intuitively,
one expects that the final relaxed state should lose the
memory of its initial configuration and thus depends only
on the globally conserved quantities, namely, the total
mass M and energy E (assuming there is no net angular
momentum). We conduct 29 runs in total with differ-
ent initial conditions of various M and E. For the same
M and E, we repeat runs with different realizations, in-
cluding different initial soliton numbers ranging from 4
to 128, different soliton sizes and initial positions. Figure
3 shows one example of the soliton collision simulations.
The AMR scheme is again adopted in order to achieve
sufficient resolution everywhere; in particular, we ensure
that every soliton is well resolved with at least ∼ 104 cells
and verify that M and E remain conserved with at most
a few percent error in all simulations.

The resulting relaxed structures that form in these soli-
ton collision experiments are always found to consist of a
halo and a solitonic core (see Fig. 1 and panel (d) of Fig.
3), similar to the results of cosmological simulations. The
core profiles satisfy the λ scaling and the halo profiles are
close to NFW. This result establishes that the core-halo
configuration is a generic structure of ψDM in virialized

gravitational equilibrium.
More importantly, as shown in Fig. 4, the core mass

follows the relation

M ′
c = α(|E′|/M ′)1/2. (5)

Here the total kinetic energy, potential energy and mass
are defined in the primed (redshift-independent) coor-
dinates as E′

k ≡ 1
2

∫

|∇′ψ′|2d3x′, E′
p ≡ 1

2

∫

|ψ′|2V ′d3x′,
M ′ ≡

∫

|ψ′|2d3x′, and α is a dimensionless constant close
to unity. The physical foundation of this relation can be
appreciated as follows. The RHS represents the halo ve-
locity dispersion, σ′

h, and on the LHS the λ scaling de-

mands that M ′
c ∼ x′−1

c , the inverse soliton size. Accord-
ingly, Eq. (5) relates the soliton size to the halo veloc-
ity dispersion through the uncertainty principle, where
x′
cσ

′
h ∼ 1. This result is non-trivial in that the uncer-

tainty principle is originally a local relation, but here it is
found to hold non-locally, relating a core (local) property
to a halo (global) property. The non-local uncertainty
principle reveals itself in panel (d) of Fig. 3. The inverse
halo velocity dispersion is manifested by the size of halo
density granules, and the fact that the halo granule size
is close to the soliton size provides another perspective
to view the finding of Eq. (5). Eigenmode decomposi-
tion of the core-halo system can help our understanding
of the detailed physics underlying this quantum “ther-
malization”, and it will be presented in a separate work
(Wong et al., in preparation).
We are now in a position to understand the physical

meaning of the empirical Eq. (4). In the structure for-
mation simulations, we verify that halos at different red-
shifts all conform to Eq. (5) by taking E′ and M ′ as the
rescaled halo energy (E′

h) and virial mass (M ′
h). Adopt-

ing the virial condition in the spherical collapse model
|E′

h| = |E′
p|/2 ∼ 3M

′2
h /10x′

vir and retrieving the redshift

dependence then give Mc = α(3Mh/10xvir)1/2a−1/2. Fi-
nally, solving xvir as a function ofMh using the definition
of virial mass given immediately after Eq. (4) yields the
expected core-halo mass relation

Mc =
1

4
a−1/2

(

ζ(z)

ζ(0)

)1/6 ( Mh

Mmin,0

)1/3

Mmin,0, (6)

whereMmin,0 = 375−1/432πζ(0)1/4ρm0(H0mψ/!)−3/2Ω−3/4
m0

∼ 4.4×107m−3/2
22 M⊙. Here m22 ≡ mψ/10−22 eV and we

have taken α = 1 and typical values for the cosmological
parameters. Eq. (6) is consistent with Eq. (4) apart
from an additional slowly varying factor ζ(z)1/6. The
physical core radius, rc = axc, is inversely proportional
to Mc and can be expressed as

rc = 1.6 m−1
22 a

1/2

(

ζ(z)

ζ(0)

)−1/6 ( Mh

109 M⊙

)−1/3

kpc.

(7)
The smallest halo should be close to a single isolated

soliton, with a wide core and a steeper outer gradient.

Schive et al, Phys.Rev.Lett. 113 (2014) no.26, 261302 
e-Print: arXiv:1407.7762

Schive, Chiueh, Broadhurst, Nature Physics 10, 496–499 (2014) 
Schive et al, Phys.Rev.Lett. 113 (2014) no.26, 261302
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FIG. 1: Density profiles of ψDM halos. Dashed lines with
various opened symbols show five examples at different red-
shifts between 12 ≥ z ≥ 0. The DM density is normalized to
the cosmic background density. A distinct core forms in ev-
ery halo as a gravitationally self-bound object, satisfying the
redshift-dependent soliton solution (solid lines) upon proper
λ scaling. Filled diamonds show an example from the soli-
ton collision simulations renormalized to the comoving coor-
dinates at z = 0. The same z = 8 halo in a CDM simulation
(filled squares) fit by an NFW profile (dot-dashed line) is also
shown for comparison.

(4πx3
vir/3)ζ(z)ρm0, where xvir is the comoving virial

radius and ζ(z) ≡ (18π2 + 82(Ωm(z)− 1)− 39(Ωm(z) −
1)2)/Ωm(z) ∼ 350 (180) at z = 0 (z ≥ 1) [44]. Note
that this definition of virial mass is the same as that for
CDM. This is because once an object exceeds the Jeans
mass on its way to collapse, the dynamics is almost
identical to the cold collapse, for which the Eikonal
approximation of wave dynamics to particle dynamics
holds until virialization takes place. Figure 2 shows this
scaling relation over three orders of magnitude in halo
mass from 108 to 1011 M⊙. We demonstrate the redshift
evolution by showing coalescence of the core-halo mass
relations of halos at five different epochs between
10 > z > 0 as well as the evolutionary trajectory of a
single halo. The deviation of the core mass from Eq. (4)
is less than a factor of two.

To understand this core-halo mass relation, we further
conduct a set of controlled numerical experiments, where
multiple solitons are initially placed randomly with zero
velocity and start to merge until the systems relax. Soli-
tons are chosen as a convenient initial condition for their
stability. Here we assume a = const. and zero back-
ground density. We would like to know whether the core-

FIG. 2: Core-halo mass relation. Different filled symbols show
halos at different epochs, while the open circles trace the evo-
lution of one halo. Dashed line shows the analytical prediction
given by Eq. (6) (see text for details).

halo configuration still persists in a different setting from
cosmological structure formation, and if so, we want to
ascertain what factors determine the soliton scale among
the infinite number of self-similar solutions. Intuitively,
one expects that the final relaxed state should lose the
memory of its initial configuration and thus depends only
on the globally conserved quantities, namely, the total
mass M and energy E (assuming there is no net angular
momentum). We conduct 29 runs in total with differ-
ent initial conditions of various M and E. For the same
M and E, we repeat runs with different realizations, in-
cluding different initial soliton numbers ranging from 4
to 128, different soliton sizes and initial positions. Figure
3 shows one example of the soliton collision simulations.
The AMR scheme is again adopted in order to achieve
sufficient resolution everywhere; in particular, we ensure
that every soliton is well resolved with at least ∼ 104 cells
and verify that M and E remain conserved with at most
a few percent error in all simulations.

The resulting relaxed structures that form in these soli-
ton collision experiments are always found to consist of a
halo and a solitonic core (see Fig. 1 and panel (d) of Fig.
3), similar to the results of cosmological simulations. The
core profiles satisfy the λ scaling and the halo profiles are
close to NFW. This result establishes that the core-halo
configuration is a generic structure of ψDM in virialized
gravitational equilibrium.

More importantly, as shown in Fig. 4, the core mass

Schrödinger-Poisson system
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Axion simulations via modified gravity
∂ρ
∂t

+ ∇ ⋅ (ρv) = 0

∂v
∂t

+ (v ⋅ ∇)v = − ∇(Φ + Q)

∇2(Φ + Q) = 4πGρ −
1

2m2
a

∇2
∇2 ρ

ρ

Modified matter component + Standard gravity 
= 

Standard CDM component + Modified gravity

Medellín-González, González-Morales, U-L, PRD 103, 083509 (2021), arXiv:2010.13998
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Figure 1. Projected dark matter densities along a thin (100 ⌘�1 kpc) slice in cosmological box simulations for di�erent dynamics (FDM/SP, left column; or
CDM/# -body, right column) and ICs (FDM or CDM, rows), for box sizes ! = 10 ⌘�1 Mpc at I = 3.
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Axion-like potential

λ =
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FDM : λ = 0 ( fa → ∞)

analysis, as proposed in the references above, can not be done directly for the
model in turn and therefore we opted to work with the 3D MPS from [116] as a
proxy to find how constraints to the axion mass relaxes when we consider the full
axion potential. More reliable constraints to the axion mass should arise from a
dedicated analysis of the Lyman alpha forest observations.

Therefore, the presence of � in our analysis plays a key role in the axion mass
constraint: it allows to the SFDM model with a fiducial mass of m� ' 10�22eV to
be in agreement with the bounds impose by Lyman-↵ observations, as we have
anticipated from the P

1D in Section 3.3 (see Figure 7). In this sense, whereas
CMB observations impose a direct bound on m�, in the case of Lyman-↵ forest
what we have is the most likely values for the axion mass such that they are in
agreement with the ⇤CDM–based data from the inferred Lyman-↵ 3D MPS.
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Figure 8: 1D and 2D posterior distributions for the axion field parameters m� and � in log-
arithmic scale. When considering the CMB observations from Planck 2018 (blue),
we can set a lower bound for the value of the axion mass of logm� = �23.99 at
95.5% C.L. (blue dashed line). On the other hand, Lyman-↵ data (green) imposes
a stronger constraint on the mass given by logm� = �21.96 at 95.5% C.L. (green
dashed line). Orange and red lines in the 2D posterior represent numerical and
physical limits respectively. See text for more details.

We also show in Figure 8 two limits: (1) a numerical one given by the extreme
case of � for a given axion mass m� (orange line), and (2) a physical one given

– 17 –

ma ≳ 10−22 eV/c2 (95.5 % CL)

Linares-Cedeño, González-Morales, U-L et al, PRD 96 (2017) 061301(R)
Linares-Cedeño, González-Morales, U-L, JCAP 1, 051 (2021), arXiv:2006.05037

Available prior volume: no evidence for an extra parameter!

JCAP01(2021)051

Figure 6. MPS for SFDM with axion masses m�/eV= 10�22, 10�23, and � from zero up to the
maximum values reached for each axion mass. It can be noted that, for all the axion masses considered
there is a cut-o↵ at small scales (larger k’s), and even more, there is an enhancement of the MPS at
such scales when considering large values of the parameter �. Cosmological data from BOSS DR11
(yellow dots) [115], and from Ly↵ forest (black dots) [116] are shown for reference.

from the Lyman-↵ forest data reported by [116], in order to impose constraints on our model
from small scale structures. It is important to mention that what we are using is a Lyman-
↵ 3D MPS at redshift z = 0, which the authors in [116] have inferred from the 1D flux
power spectrum measured by the BOSS and eBOSS collaboration [126]. Inferring the linear
matter spectrum at z = 0 is a highly model-dependent process, and therefore, the constraints
obtained in this work from Lyman-↵ have to be understood as how much SFDM can deviate
from the CDM case, which is the fiducial model considered in [116], and should only be read
as an approximation for what is the e↵ect of having the full axion potential on the constraints
for the axion mass.
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Strong lensing and SFDM (early)
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Hints on halo evolution in SFDM models with galaxy observations
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(Dated: October 29, 2018)

A massive, self-interacting scalar field has been considered as a possible candidate for the dark
matter in the universe. We present an observational constraint to the model arising from strong
lensing observations in galaxies. The result points to a discrepancy in the properties of scalar field
dark matter halos for dwarf and lens galaxies, mainly because halo parameters are directly related
to physical quantities in the model. This is an important indication that it becomes necessary to
have a better understanding of halo evolution in scalar field dark matter models, where the presence
of baryons can play an important role.

PACS numbers: 95.30.Sf, 95.35.+d, 98.62.Gq, 98.62.Sb.

I. INTRODUCTION

The nature of dark matter (DM) remains elusive today,
even though a generic cold particle weakly coupled to the
standard model seems to be the most promising candi-
date [1]. Treating DM as a bunch of classical particles is
an appropriate e↵ective description for many physical sit-
uations. However, if DM is composed of bosons, the zero
mode can develop a non-vanishing expectation value; this
e↵ect is usually known as Bose-Einstein condensation. A
condensed phase does not admit a description in terms
of classical particles, and the concept of a coherent exci-
tation (i.e. a classical field) is more appropriate for prac-
tical purposes [2]. A specific realization of this scenario
can be provided by the axion [3], see also [4].

In this paper we shall explore the lensing properties
of a generic model of DM particles in a condensate, and
compare the conditions necessary to produce strong lens-
ing with those required to explain the dynamics of dwarf
galaxies. As a result we will get some insight into halo
evolution arising from this type of models.

In particular, we will consider the case of a com-
plex, massive, self-interacting scalar field � satisfying
the Klein-Gordon (KG) equation, 2� � (mc/~)2� �
�|�|2� = 0, with the box denoting the d’Alembertian
operator in four dimensions. For those natural situa-
tions in which the scalar field mass m is much smaller
than the Planck scale, mPlanck = (~c/G)1/2, such that
⇤ ⌘ �m

2

Planck
/4⇡m2 � 1, the coherent (self-gravitating,

spherically symmetric) solutions to the KG equation ad-
mit a very simple expression for the mass density [5, 6],

⇢(r) =

8
<

:
⇢c

sin(⇡r/rmax)

(⇡r/rmax)
for r < rmax

0 for r � rmax

. (1)

As usual we will refer to this model as scalar field dark
matter (SFDM). Here rmax ⌘

p
⇡2⇤/2 (~/mc) is a con-

stant with dimensions of length (notice that rmax is just

the Compton wavelength of the scalar particle, ~/mc,
scaled by a factor of order ⇤1/2), and ⇢c the density at
the center of the configuration. The mass density profile
in Eq. (1) leads to compact objects of size rmax, and typ-
ical masses, 4⇢cr3max

/⇡, that vary from configuration to
configuration according to the value of the central den-
sity.

Eq. (1) was obtained without taking into account the
gravitational influence of any other matter sources, and
assuming that all the scalar particles are in the conden-
sate. It has been used as a first order approximation to
describe the distribution of matter in dwarf shperoidals,
which are expected to be DM dominated [6–8]. The mass
distribution would be smooth close to the center of these
galaxies, alleviating the cusp/core problem motivated by
the discrepancies between the observed high resolution
rotation curves and the profiles suggested by N-body sim-
ulations [9]; see however [10].

The dynamics of dwarf galaxies suggests a self-
interacting scalar with m

4
/� ⇠ 50 � 75 (eV/c2)4, (i.e.

rmax ⇠ 5.5 � 7Kpc), and typical central densities of the
order of ⇢c ⇠ 10�3

M�/pc3, see Ref. [6]. We are aware
that Milky Way size galaxies are, at least, an order of
magnitude larger than this value of rmax, and then they
do not fit in this model as it stands. Nonetheless, if
not all the DM particles are in the condensate, there is
a possibility to have gravitational configurations where
the inner regions are still described by the mass density
profile in Eq. (1), wrapped in a cloud of non-condensed
particles [11]. For the purpose of this paper we do not
need to specify the complete halo model. This is because
strong lensing is not very sensitive to the mass distribu-
tion outside the Einstein radius, at most of the order of
a few Kpc, just bellow the expected value of rmax. We
could not neglect the exterior profile of the halo if we were
interested, for instance, in weak lensing observations.
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4Departamento de F́ısica, DCI, Campus León, Universidad de Guanajuato, 37150, León, Guanajuato, México.
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ABSTRACT

Wave Dark Matter (WaveDM) has recently gained attention as a viable candidate to account for
the dark matter content of the Universe. In this paper we explore the extent to which, and under
what conditions, dark matter halos in this model are able to reproduce strong lensing systems. First,
we explore analytically the lensing properties of the model, finding that a pure WaveDM density
profile, soliton profile, produces a weaker lensing effect than similar cored profiles. Then we analyze
models with a soliton embedded within an NFW profile, as has been found in numerical simulations
of structure formation. We use a benchmark model with a boson mass of ma = 10−22 eV, for which we
see that there is a bi-modality in the contribution of the external NFW part of the profile, and some
of the free parameters associated with it are not well constrained. We find that for configurations
with boson masses 10−23 – 10−22 eV, a range of masses preferred by dwarf galaxy kinematics, the
soliton profile alone can fit the data but its size is incompatible with the luminous extent of the lens
galaxies. Likewise, boson masses of the order of 10−21 eV, which would be consistent with Lyman-α
constraints and consist of more compact soliton configurations, necessarily require the NFW part
in order to reproduce the observed Einstein radii. We then conclude that lens systems impose a
conservative lower bound ma > 10−24 eV and that the NFW envelope around the soliton must be
present to satisfy the observational requirements.
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PALTAS 

https://github.com/swagnercarena/paltas 

4 Wagner-Carena et al.

Fig. 1.—: Schematic summary of the ingredients of our strong gravitational lensing simulation. The light rays leave
the source (Section 2.4), are perturbed by the line-of-sight halos (Section 2.3), are bent by the main deflector (Section
2.1) and further perturbed by the subhalos (Section 2.2) and remaining line-of-sight halos to finally be measured by
our detector. On top of the raytracing, there are also observational e↵ects from the detector (Section 2.5) that further
distort the image. The final observed image is shown on the far left.

Finally, the main deflector has redshift zlens and host
mass mhost. The host mass uses the M200c definition
(White 2001)10. There does not exist an exact mapping
from the host mass to the Einstein radius, therefore the
two values are left uncorrelated in our simulations.

2.2. Subhalos

The subhalos of the main deflector in our simulations
follow the parameterization introduced by Gilman et al.
(2020a) with some slight modifications. We draw our
subhalos from the following mass function:

d2Nsub

dA dmsub
= ⌃sub

m�sub

sub

m�sub+1
pivot,sub

, (6)

where ⌃sub is the normalization of the SHMF,msub is the
subhalo mass using the M200c definition (White 2001)10,
dA is the di↵erential area element, and mpivot,sub is the
pivot mass. We render subhalos within the mass range
[mmin,sub,mmax,sub]11.
The SHMF as written contains no explicit dependence

on host properties. Any scaling by, for example, the host
mass or redshift has been absorbed into our definition of
⌃sub. We expect our network to be sensitive to the pro-
jected number of subhalos in the main deflector, which
for a fixed slope �sub is best captured by ⌃sub. For a real-
istic/observed population of lenses, we therefore expect

10 Our definition of M200c uses the critical density at the redshift
of the subhalo, not the critical density at redshift zero.

11 We assume that more massive halos would host su�cient
baryons to be visible in our images and therefore modeled individ-
ually. The lower limit is set below the sensitivity of our inference
(see Appendix F).

our framework to return a distribution of ⌃sub values
that must be interpreted in the context of a model with
host-dependent scaling.
The subhalos themselves are modeled as a truncated

NFW radial density profile (Baltz et al. 2009). The pro-
file can be defined in terms of a mass, msub, a concen-
tration, csub, and a truncation radius rt. A detailed dis-
cussion of how these are drawn in our simulation can be
found in Appendix A. For the positions of the subhalos,
we follow Gilman et al. (2020a). Specifically, outside of
the host’s scale radius, rs,host, the subhalos follow the
host’s mass profile; within rs,host, the subhalos are uni-
formly distributed. To keep the simulations numerically
tractable without altering the signal, we render subhalos
within a projected radius of 3✓E , where ✓E is the Ein-
stein radius of the main deflector. The z-coordinates of
the subhalos are also constrained to be within the interval
[�R200c, R200c]. Here, R200c is the smallest radius such
that the host halo’s enclosed mass has a mean density
of 200 times ⇢crit(z), the critical density of the universe
at redshift z. Outside of this radius, potential halos are
considered line-of-sight halos and accounted for in the
two-point halo correlation (see Section 2.3).

2.3. Line-of-Sight Halos

Historically, several studies of galaxy–galaxy strong
lenses have ignored the contributions from line-of-sight
halos (Vegetti et al. 2010, 2012). However, Despali et al.
(2018) and Şengül et al. (2020) have shown that, for cer-
tain lensing configurations, line-of-sight halos can pro-
duce a signal on par with the subhalos of the main deflec-
tor. In fact, Despali et al. (2018) and Çağan Şengül et al.
(2022) demonstrate that one of the two existing subhalo
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• Start with a 3D mass density:  

• Calculate a surface density and normalize it to obtain 

the convergence field:  

• How to calculate the perturbations in the convergence? 

• Assume: a collection of eigenfunctions on the same 
potential well, and use them to model the total matter 
density. 

• Caveat: the number of eigenfunctions is not well 
determined by the potential well, and may lead to 
artificial enhancement of the  granule population in 
the halo. Likewise, artificial enhancement of the 
perturbations in the convergence of the lens.

ρ(x) + δρ(x)

κ(ξ) + δκ(ξ) =
Σ(ξ) + δΣ(ξ)

Σc
Fuzzy dark matter and MG J0751+2716 L3

m� = 3.2 � 10�22 eV, fDM = 0.63

200 mas
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Figure 1. Example surface mass density maps (^ , in units of the critical density ⌃2) with the model lensed images in orange contours (top row) and the
corresponding reconstructed source surface brightness maps (� , in units of the peak surface brightness �max; bottom row) for three random realizations of MG
J0751+2716 in an FDM cosmology. Critical curves and caustics are plotted in white. The lensing effect of the FDM granules is apparent: The critical curves
wiggle back and forth across the lensed arcs, which would require the presence of multiple images of the same region of the source along the arc. In the absence
of such features in the observed data, the morphology of the inferred source is disrupted as the model attempts to fit the observation.

form of a Gaussian random field with correlation length oj and a
position-dependent variance given by

hX^2i = oj
p
c

⌃2
2

π
d2

DM 3;, (2)

where the integral is along the line of sight, dDM is the smooth 3D
density profile of the dark matter component of the lens, ⌃2 is the
lensing critical surface mass density, and oj = \/(<jfE) corre-
sponds to the (reduced) de Broglie wavelength of the dark matter
particle. In practice, we generate realizations of X^ by first generat-
ing a white noise field modulated by the variance in equation (2),
then correlating using a Gaussian kernel of width oj via an FFT-
based convolution. We then solve for the resulting perturbation to the
lensing potential X using another FFT.

The correlation length oj is inversely proportional to fE , the ve-
locity dispersion of the dark matter in the lens galaxy, which is a proxy
for the depth of the gravitational potential well in which the dark mat-
ter field resides. There are no resolved kinematic data on this lens
system, so it must be estimated using the Einstein radius of the lens.
Alloin et al. (2007) found fE = 101 km s�1, using a cored pseudo-
isothermal density profile. We derive fE = 108 km s�1, assuming
a singular isothermal profile. To accommodate this uncertainty, we
draw fE from a uniform prior between 100 and 110 km s�1 (see
Table 1).

An additional source of uncertainty in generating FDM lens real-
izations is the dark matter fraction in the lens, 5DM, which directly
determines the granule amplitude. Our composite smooth model
from Powell et al. (2022) gives a baryonic mass (measured within
the critical curve) of 8.6⇥109 M� . This number is in good agreement
with observations by the Hubble Space Telescope (HST) WFPC2 as
part of the CfA-Arizona Space Telescope LEns Survey (CASTLES)
project (e.g. Kochanek et al. 2000); a fit to the +- and �-band lens
galaxy photometry using �������� (Blanton & Roweis 2007) yields

a baryonic mass of 8.0⇥109 M� . The total projected mass of the lens
within the critical curve is set by the Einstein radius at 2.7⇥1010 M� .
Allowing for an uncertainty of ±0.2 dex in the baryonic mass, we
adopt a uniform prior on 5DM between 0.5 and 0.8 (see Table 1).
This prior range is consistent with dark matter fractions in massive
early-type lens galaxies studied by Oldham & Auger (2018).

We assume that all small-scale inhomogeneities in the lensing
convergence are produced by FDM granules in the lens itself. We do
not explicitly consider the effects of a central soliton core in the FDM
halo; such a core would be much smaller than the Einstein radius of
the lens (Schive et al. 2014; Chan et al. 2020), and would therefore be
absorbed in the smooth lens model. Unlike the analysis by Laroche
et al. (2022), we do not include subhalo or line-of-sight (LOS) halo
populations in our lens model. This choice is justified because in
the mass range of <j ⇠ 10�22 to 10�20 eV, in which our analysis
is most sensitive, an FDM cosmology cannot produce subhaloes or
LOS haloes that are highly concentrated or numerous enough to
mimic the signal of FDM granules (Schive et al. 2016; see also Fig.
5 of Laroche et al. 2022); indeed, any large-scale contribution to the
lens model by diffuse low-mass haloes would already be accounted
for in the smooth model. The practical effects of excluding low-mass
haloes from our model are the loss of some sensitivity to <j and the
inability to place an upper bound on <j .

3 RESULTS

We show example convergence maps for three FDM lens realizations
with their corresponding maximum a-posteriori (MAP) source sur-
face brightness reconstructions in Fig. 1. For <j . 10�21 eV, the
critical curves (plotted in white) cross back and forth many times
across the lensed arcs. Such a configuration of critical curves would
imply the presence of many images of alternating parity along the arc

MNRAS 000, 1–5 (2023)

MNRAS 000, 1–5 (2023) Preprint 8 June 2023 Compiled using MNRAS LATEX style file v3.0

A lensed radio jet at milli-arcsecond resolution II: Constraints on fuzzy
dark matter from an extended gravitational arc

Devon M. Powell,1¢ Simona Vegetti,1 J. P. McKean,2,3 Simon D.M. White,1
Elisa G. M. Ferreira,4,5 Simon May6,7, and Cristiana Spingola8
1Max Planck Institute for Astrophysics, Karl-Schwarzschild-Straße 1, 85748 Garching bei München, Germany
2Kapteyn Astronomical Institute, University of Groningen, PO Box 800, NL-9700 AV Groningen, The Netherlands
3ASTRON, Netherlands Institute for Radio Astronomy, PO Box 2, NL-7990 AA Dwingeloo, The Netherlands
4Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS, The University of Tokyo, Chiba 277-8583, Japan
5Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, Butantã, 05508-090, São Paulo, Brazil
6Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON, N2L 2Y5, Canada
7Department of Physics, North Carolina State University, Raleigh, NC, 27695-8202, USA
8INAF � Istituto di Radioastronomia, via Gobetti 101, I�40129, Bologna, Italy

Accepted 2023 June 06. Received 2023 May 12; in original form 2023 February 21

ABSTRACT
Using a single gravitational lens system observed at . 5 milli-arcsecond resolution with very long baseline interferometry
(VLBI), we place a lower bound on the mass of the fuzzy dark matter (FDM) particle, ruling out <j  4.4 ⇥ 10�21 eV with
a 20:1 posterior odds ratio relative to a smooth lens model. We generalize our result to non-scalar and multiple-field models,
such as vector FDM, with <j,vec > 1.4 ⇥ 10�21 eV. Due to the extended source structure and high angular resolution of the
observation, our analysis is directly sensitive to the presence of granule structures in the main dark matter halo of the lens, which
is the most generic prediction of FDM theories. A model based on well-understood physics of ultra-light dark matter fields in
a gravitational potential well makes our result robust to a wide range of assumed dark matter fractions and velocity dispersions
in the lens galaxy. Our result is competitive with other lower bounds on <j from past analyses, which rely on intermediate
modelling of structure formation and/or baryonic effects. Higher resolution observations taken at 10 to 100 GHz could improve
our constraints by up to 2 orders of magnitude in the future.

Key words: gravitational lensing: strong – galaxies: haloes – cosmology: dark matter – radio continuum: general – quasars:
individual: MG J0751+2716

1 INTRODUCTION

The characterization of dark matter (DM) is of central importance
to astrophysics and cosmology. Despite abundant observational evi-
dence of a dark, collisionless fluid comprising ⇠ 85 per cent of the
matter in the universe, the nature of dark matter remains an open
question. While cold dark matter (CDM) is the current theoretical
paradigm due to its success in explaining observed phenomena across
a wide range of physical scales, evidence for its agreement with obser-
vations on sub-galactic scales has not been conclusive (e. g. Bullock
& Boylan-Kolchin 2017). Alternative models of dark matter com-
prised of ultra-light particles (ULDM) have been proposed as a way
of alleviating such discrepancies without invoking complex baryonic
feedback processes (see Ferreira 2021 for a comprehensive review).

Fuzzy Dark Matter (FDM) is a class of ULDM comprised of
non-interacting scalar particles of mass <j ⇠ 10�22 eV. Due to its
⇠kpc-scale de Broglie wavelength, FDM exhibits a rich astrophysical
phenomenology (Hu et al. 2000; Hui et al. 2017). A key prediction

¢ E-mail: dmpowell@mpa-garching.mpg.de

from FDM models is that the mass density profiles of dark mat-
ter haloes exhibit small-scale fluctuations due to wave interference
(commonly termed “granules”), which give them a vastly different
structure from the haloes expected in the CDM and warm dark matter
(WDM) models (Schive et al. 2014, 2016; May & Springel 2022).
In addition to these effects, on sub-galactic scales, FDM models pre-
dict much lower concentrations and cored density profiles in dwarf
galaxies due to “quantum pressure,” which is absent in CDM and
WDM (Schive et al. 2016). Similarly to WDM, FDM also predicts
a suppression in the numbers of low-mass haloes relative to CDM
(Schive et al. 2016), albeit via a different mechanism.

Constraints have been placed on the allowed mass range for
the FDM particle via several observational routes. Jeans mod-
elling of dwarf spheroidal galaxies (dSphs) yields a lower bound
of <j & 10�22 eV (Chen et al. 2017; Safarzadeh & Spergel 2020;
Hayashi et al. 2021). Dalal & Kravtsov (2022) find<j > 3⇥10�19 eV
by considering stellar velocity dispersions in ultra-faint dwarf galax-
ies (UFDGs). Using Lyman-U forest observations of cosmic struc-
ture, Iršič et al. (2017) and subsequently Rogers & Peiris (2021)
constrain <j > 3.8 ⇥ 10�21 eV and <j > 2 ⇥ 10�20 eV, respec-

© 2023 The Authors
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Figure 2: Lensing Magnification of  DM versus %DM halos. Rainbow colors indicating lensing
magnification, µ, imposed onto a source at zs = 1.51 by a halo at zl = 0.89 comprising either %DM or  DM,
both of which have the same global NFW profile (with parameters as listed in Extended Data Table 1).
Physical scales are plotted at the redshift of the halo. a, Halo with a smoothly-varying density profile as is
characteristic of %DM. b–d, Halos onto which di↵erent GRF realisations have been imprinted onto the %DM
halo in a to mimic  DM halos having �dB = 180 pc (corresponding to m = 1⇥ 10�22 eV). The fractional
masses of smoothly-distributed baryons within the Einstein ring increase from b to d, thereby progressively
damping fluctuations in the surface mass density of the  DM halos (see text) and consequently also local
perturbations in their µ. White arclets are lensed images of a compact circular source located at a fixed
position near the cusp of a caustic (see Extended Data Fig. 3). Their lengths are proportional to their lensing
magnifications, which are visibly di↵erent for the corresponding arclets generated by the di↵erent halos. Red
dots correspond to the intensity-weighted centroids of the arclets in a as lensed by the %DM halo, and are
plotted repeatedly in b–d to make clear the di↵erent positions of the lensed images generated by the  DM
halos having the same global profile. These di↵erences give rise to brightness and position anomalies when
a model %DM lens (a) is used to reproduce the multiply-lensed images generated by  DM halos (b–d), as
quantified in Fig. 3.

%DM and Fig. 2b–d for  DM (see construction in
Methods). To emphasise the indeterminate nature
of quantum interference in an actual  DM halo, the
 DM halos in Fig. 2b–d have di↵erent patterns in
their random density fluctuations and therefore corre-
spondingly di↵erent patterns in their critical curves.
These halos also have di↵erent mass fractions in
stars and gas (collectively referred to as baryons):
the incorporation of smoothly-distributed baryons is
to dampen modulations in the 3-dimensional mass

density field of a  DM halo, and therefore fluctu-
ations in its corresponding projected 2-dimensional
surface mass density field. The damping introduced
by smoothly-distributed baryons decreases away from
the halo centre for a more centrally concentrated dis-
tribution of baryons than  DM. Given the relatively
short distances from the critical curve involved for
the multiply-lensed images considered in Fig. 2 as de-
scribed next, for simplicity we damp the surface mass
density fluctuations by constant factors of 20%, 50%,

v

• Start with a 3D mass density:  

• Calculate a surface density and normalize it to obtain the 

convergence field:  

• How to calculate the perturbations in the convergence? 
• Assume: variance in column density is proportional to 

variance in the 3D density along the line of sight. 
• Caveat: the exact proportionality in the equations 

below is not known!

ρ(x) + δρ(x)

κ(ξ) + δκ(ξ) =
Σ(ξ) + δΣ(ξ)

Σc

Substituting �zi by �dB,

�2
⌃(⇠) = �dB

⇣
lim
n!1

nX

i=1

Z zi+1

zi

�2
⇢ dz

⌘

= �dB

Z 1

�1
�2
⇢(z, ⇠)dz (7)

meaning that the variance in the column mass density
can simply be written in terms of the variance in the
3-D mass density along a given sightline. In Eq. 7, we
have made explicit that �2

⇢ is a function of the 3-D
position r ! (z, ⇠).

As an example, let us consider a  DM halo
having a global density profile described by a NFW
profile. If the 3-D density of this NFW profile at
r is denoted as ⇢smooth(z, ⇠), then the standard
deviation in density at r for the corresponding  DM
halo is �⇢(z, ⇠) ⇠ ⇢smooth(z, ⇠) (as the 3-D density
fluctuates between 0 and twice the local mean
density). The exact proportionality between �⇢(z, ⇠)
and ⇢smooth(z, ⇠) is not of great concern because,
in a real galaxy, �⇢(z, ⇠) is damped to varying
degrees depending on the radial distribution of a
smoothly-varying baryonic component as discussed
below. In this situation:

�2
⌃(⇠) = �dB

Z 1

�1
�2
⇢(z, ⇠)dz

' �dB

Z 1

�1
⇢2smooth(z, ⇠)dz

'

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

⇢2ors�dB

"
⇡

x
� 1

(x2 � 1)3

"
6x4 � 17x2 + 26

3
+

2x6 � 7x4 + 8x2 � 8p
1� x2

sech�1(x)

##
, x < 1,

⇢2ors�dB

"
⇡

x
� 1

(x2 � 1)3

"
6x4 � 17x2 + 26

3
+

2x6 � 7x4 + 8x2 � 8p
x2 � 1

sec�1(x)

##
, x > 1.

(8)

where ⇢o is a normalization factor (⇢smooth ⌘ ⇢o/4

at the scale radius, rs), and x ⌘ ⇠/rs. In the for-
malisation of gravitational lensing, we can define a
dimensionless quantity known as the convergence, ,
which expresses the normalised column density as
 = ⌃(⇠)/⌃cr, where ⌃cr is the critical surface den-
sity. The latter is related to the lensing geometry
by ⌃cr = c2Ds/(4⇡DlDls), where Ds is the angular
diameter distance to the lensed source, Dl is the an-
gular diameter distance to the lens, and Dls is the
angular diameter distance between the lens and the
lensed source. The deviation in column density from
the local mean in terms of the convergence can be
written as � = �⌃/⌃cr. In the same way, we can
define a dimensionless quantity for the variance in
column density fluctuations, �2

(⇠) ⌘ �2
⌃(⇠)/⌃

2
cr. A

detailed calculation in Fourier space arrives at a sim-
ilar form for the variance in column density of the
 DM fluctuations40.

For a foreground lensing galaxy at a redshift of zl
= 0.89 having a virial mass of 7 ⇥ 1011 M� along
with a background lensed galaxy at a redshift of zs
= 1.51, we plot in Extended Data Fig. 1 the ratio
�(⇠)/smooth for which smooth is the convergence
for the adopted underlying smoothly-varying density
profile. The blue curve is for a  DM halo having a
NFW global density profile as was used for making
Figs. 1–3, and the red curve for a  DM halo having
a power-law (PL) global density profile as was used
for making Fig. 4. As can be seen, the fluctuations
in column mass density of a  DM halo diminishes
outwards from the halo centre. The dashed vertical
line indicates the Einstein radius for the model halos,
around which the variation in �/smooth with radius
is quite similar for both halos.

1.3 Construction of  DM lenses

To create the GRF capturing to the pervasive fuctua-
tions in the column mass density of  DM halos about
the local mean, we used the powerbox package41 in
Python. The GRF has a mean of zero, and a stan-
dard deviation that varies with radius according to
Eq. 8 for a NFW profile – and as plotted in Extended
Data Fig. 1 (blue curve) for the NFW having param-
eters as listed in Extended Data Table 1. Following
standard practise40,42, we adopted for each fluctua-

xiii
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DESI constraints on AxionDE

The axion model of dark 
energy (aka PNGB model)Work i

n progress!



Conclusions
• Work in progress … 

• It’s been under scrutiny for more than two decades 

• It’s a good scientific model: it can be falsified by 
different ranges of observations 

• If the DM riddle needs an exotic solution, what is 
more exotic than quantum effects at galactic level? 

• Is there any characteristic scale in the DM field?
 

• Ultimate challenge: cosmological simulations and 
Lyman-alpha observations, for a joint view of the 
model  from different scales

LC =
h

mac
= 0.4 m−1

a22 pc LdB =
h

mav
= 400 m−1

a22 pc
like hidden sectors with low confinement scales. This both opens up interesting phenomenology
associated to the presence of this “dark world” and raises the question of how it managed to escape
being observed so far. We will touch on some of the issues involved in the concluding Section 3.
For now we focus upon the observational signatures of the light axions that we have argued are
generic to string theory once the strong CP problem is solved.

2 Cohomologies from Cosmology

CMB 
Polarization

10-33 4 ! 10-28

Axion Mass in eV

108

Inflated 
Away

Decays

3 ! 10-10

QCD axion
2 ! 10-20

3 ! 10-18

Anthropically Constrained
Matter

Power Spectrum
Black Hole Super-radiance

Figure 1: Map of the Axiverse: The signatures of axions as a function of their mass, assuming
fa ⇡ MGUT and Hinf ⇠ 108 eV. We also show the regions for which the axion initial angles are
anthropically constrained not to over-close the Universe, and axions diluted away by inflation.
For the same value of fa we give the QCD axion mass. The beginning of the anthropic mass
region (2 ⇥ 10�20 eV) as well as that of the region probed by density perturbations (4 ⇥ 10�28

eV) are blurred as they depend on the details of the axion cosmological evolution (see Section
2.3). 3 ⇥ 10�18 eV is the ultimate reach of density perturbation measurements with 21 cm line
observations. The lower reach from black hole super-radiance is also blurred as it depends on
the details of the axion instability evolution (see Section 2.5). The region marked as “Decays”,
outlines very roughly the mass range within which we expect bounds or signatures from axions
decaying to photons, if they couple to ~E · ~B. We will discuss axion decays in detail in a companion
paper.

2.1 Discovering the String Axiverse

We now turn to the observational consequences of axions lighter than or around the QCD axion
mass. For simplicity, we keep fa fixed at MGUT and Hinfl ⇠ 0.1 GeV. The initial displacement of
axions heavier than ⇠ 10�20 eV has to be tuned in order for them not to overclose the universe and
axions heavier than 0.1 GeV have been diluted away by inflation. The observational consequences
of the string axiverse are outlined in Figure 1.

We concentrate on three main windows to the axiverse. First, as discussed in Section 2.2
axions of masses between 10�33 eV and 4⇥ 10�28 eV, if they couple to ~E · ~B, cause a rotation in

8

Fuzzy dark matter confronts rotation curves of nearby dwarf irregular galaxies  
Bañares-Hernández et al, ArXiv 2304:05793
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Using mock catalogs of astrometric and spectroscopic obser-
vations of the star S2 orbiting near Sagittarius A⇤ Ref. Della
Monica & de Martino (2023) obtained an upper limit of
ma < 10�21 eV at a 95% CL.

– The suppression of the cosmic growth in FDM reduces the
number of low-mass haloes, which impinges on the dwarf-
spheroidal galaxies’ (dSph) typical distance scales. From the
observed population of satellites in the Milky Way the mass
of the FDM is required to be ma > 2.9 ⇥ 10�21 eV Nadler
et al. (2019).

– By applying a Jeans analysis for Milky Way satellites dSphs,
it is possible to study the density profile predicted by FDM.
By considering a soliton core and kinematic data of the clas-
sical dSphs, Ref. Chen et al. (2017) obtained the value for
ma = 1.79+0.35

�0.33 ⇥ 10�22 eV (at 2�). Comparing to simulated
data on the line-of-sight velocity dispersion (�LOS) of For-
nax and Sculptor dSphs, Ref. González-Morales et al. (2017)
found a tighter upper bound ma < 4⇥10�23 eV at 97.5% CL.

– The existence of the sub-halo to host Eridanus II low-surface
brightness dwarf galaxy and the survival of its star clus-
ter can also constrain the FDM mass Bar-Or et al. (2019);
Brandt (2016). As it is shown in Marsh & Niemeyer (2019),
the sub-halo mass function in the Milky Way and the exis-
tence of Eridanus II implies ma & 8 ⇥ 10�22 eV. Gravita-
tional heating can also be applied in the case of Eridanus
II and its star cluster, which will be destroyed by gravita-
tional heating from the fluctuations of soliton peak density
for 10�21 eV  ma  10�19 eV Marsh & Niemeyer (2019).

– Sizes and stellar kinematics of ultra-faint dwarf (UFD)
galaxies can be used to estimate the e↵ects wave interfer-
ence produced by FDM. In particular, in order for the FDM’s
gravitational heating to be weak enough to explain the ob-
served velocity dispersions of 2.5� 3 km/s and sizes 24� 40
pc in Segue 1 and 2 Simon et al. (2011); Kirby et al. (2013),
Ref. Dalal & Kravtsov (2022) derived a lower bound of
ma > 3 ⇥ 10�19 eV at 99% CL. On the other hand, a Jeans
analysis of 18 galactic UFD galaxies finds a preference for
higher values of FDM mass in Hayashi et al. (2021), being
the strongest one for Segue 1 with ma = 1.1+8.3

�0.7 ⇥ 10�19 eV.
Finally, Ref. Calabrese & Spergel (2016) found that FDM
particle with mass ma ⇠ 3.7� 5.6⇥ 10�22 eV is in agreement
with the data of half-light mass of Draco II and Triangulum
II, although Ref. Safarzadeh & Spergel (2020) later found an
upper limit ma . 10�21 eV using a kinematic analysis of the
Milky-Way’s satellites.

In Fig. 9 we show a selection of the existing constraints on
the axion mass along with the ones derived in this work from
the rotation curves of the isolated dwarf irregular galaxies in the
LTs sample. Namely, the 2� interval stemming directly from the
average of the fits to the rotation curves, Eq. (23), and the lower
bounds derived from the comparison of the HMF of FDM with
dwarf-galaxy counts in the LGV. Nonetheless, before closing
this section, we would like to point out that many of the analyses
leading to these constraints depend on astrophysical modelling
assumptions and are, thus, subject to significant uncertainties.
See for instance Ferreira (2021) and, in particular, Sec. 4.3 of
Ref. Chiang et al. (2022) for a recent critical reappraisal of some
of these constraints.

6. Conclusions

In this work we have investigated and tested the predictions of
FDM at galactic scales using a homogeneous and robust sample

10�26 10�24 10�22 10�20 10�18 10�16 10�14 10�12 10�10

ma [eV]

MW Disk Heating
OTD

Dwarf SpheroidalsdSphs

Dyn. Friction-Fornax GCs

UFD Galaxies Segue 1

Eridanus II Eri II-SC

Sub-Halo Mass Function

dIrrs LITTLE THINGS

Sgr A�-S2 Star

BHSR-SMBHs BHSR-SMM87�
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Cosmic Shear
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Fig. 9: Bounds from cosmology and astrophysics on the axion
mass. The constraint from HMF in the local group with the
haloes of nearby dwarf irregulars (dIrrs) from the LTs catalog
is displayed with dark turquoise bars. On the dIrrs bar, we also
show the optimal mass ma = 1.9+0.5

�0.4 ⇥ 10�23 eV (uncertainties
at 2� CL). Our constraints are compared to other cosmological
and astrophysical limits (see main text for details).

of high-resolution rotation curves from the “LITTLE THINGS
in 3D” (or LTs for short in our paper) catalog. This comprises
a collection of isolated, dark matter-dominated dwarf-irregular
galaxies that provides an optimal benchmark for cosmological
studies. The methodological basis of our study is a statistical
framework based on the �2 analysis of the rotation curves using
a soliton+NFW density profile as a theoretical model. This de-
pends on four parameters, 2 for the soliton that we choose to be
the axion mass ma and the core mass Mc, and 2 for the NFW halo
that we choose to be the concentration parameter c and the halo
mass Mh. We fit the data using current MCMC techniques and a
rather loose set of priors, except for the core-halo relation linking
Mc and Mh for which we use a broad set of predictions stemming
from the FDM simulations compiled in Chan et al. (2022). From
the results of the fits we can perform various diagnostics on the
predictions of FDM that allow us to draw the main conclusions
of our work:

– The soliton+NFW model provides an excellent fit to the
rotation curves of the LTs sample with the inferred axion
masses clustering around a relatively narrow range of val-
ues ma ⇠ (1 � 5) ⇥ 10�23 eV. Some of the galaxies lead to
very stringent constraints on ma, viz. Fig. 4, so that combin-
ing them yields a relatively poor fit. If we conservatively at-
tribute this to possible systematic e↵ects or presence of out-
liers we obtain ma = 1.90+0.24

�0.21 ⇥ 10�23 eV.
– However, we find that the individual determinations of ma do

not scatter randomly around the average but follow, instead,
a mild correlation with the stellar mass of the galaxy with
a significance of ⇠ 3.3�. Moreover, displaying the results
of our fits in the rc � ⇢c and rc � Mc planes we find scaling
relations in the data that are at odds with the predictions of
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